Projective Hedging Algorithms for Multistage Stochastic Programming, Supporting Distributed and Asynchronous Implementation

IF 0.7 4区 管理学 Q3 Engineering Military Operations Research Pub Date : 2023-07-17 DOI:10.1287/opre.2022.0228
Jonathan Eckstein, Jean-Paul Watson, David L. Woodruff
{"title":"Projective Hedging Algorithms for Multistage Stochastic Programming, Supporting Distributed and Asynchronous Implementation","authors":"Jonathan Eckstein, Jean-Paul Watson, David L. Woodruff","doi":"10.1287/opre.2022.0228","DOIUrl":null,"url":null,"abstract":"In “Projective Hedging Algorithms for Multistage Stochastic Programming, Supporting Distributed and Asynchronous Implementation,” Eckstein, Watson, and Woodruff derive a new class of decomposition methods for convex multistage stochastic programs defined on finite but potentially large scenario trees. These methods resemble Rockafellar and Wets’ now-classical progressive hedging (PH) method but are based on a flexible projective operator-splitting scheme instead of the standard alternating direction method of multipliers (ADMM). The new algorithms only need to reoptimize subproblems for a subset of the scenarios at each iteration, instead of all of them, and are also amenable to a form of asynchronous implementation, without the algorithm randomization or small step-size requirements usually imposed in such contexts. In the online appendix, the authors demonstrate significant computational gains over PH, applying hundreds or thousands of processor cores to problem instances with up to a million scenarios.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"94 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.0228","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In “Projective Hedging Algorithms for Multistage Stochastic Programming, Supporting Distributed and Asynchronous Implementation,” Eckstein, Watson, and Woodruff derive a new class of decomposition methods for convex multistage stochastic programs defined on finite but potentially large scenario trees. These methods resemble Rockafellar and Wets’ now-classical progressive hedging (PH) method but are based on a flexible projective operator-splitting scheme instead of the standard alternating direction method of multipliers (ADMM). The new algorithms only need to reoptimize subproblems for a subset of the scenarios at each iteration, instead of all of them, and are also amenable to a form of asynchronous implementation, without the algorithm randomization or small step-size requirements usually imposed in such contexts. In the online appendix, the authors demonstrate significant computational gains over PH, applying hundreds or thousands of processor cores to problem instances with up to a million scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多阶段随机规划的投影对冲算法,支持分布式和异步实现
在“支持分布式和异步实现的多阶段随机规划的投影对冲算法”中,Eckstein, Watson和Woodruff为有限但可能很大的场景树上定义的凸多阶段随机规划导出了一类新的分解方法。这些方法类似于Rockafellar和Wets现在经典的渐进式对冲(PH)方法,但基于灵活的投影算子分裂方案,而不是标准的乘数交替方向方法(ADMM)。新算法只需要在每次迭代时为场景的一个子集重新优化子问题,而不是所有的子问题,并且还适用于异步实现的形式,而不需要算法随机化或通常在此类上下文中强加的小步长要求。在在线附录中,作者展示了PH的显著计算增益,将数百或数千个处理器内核应用于多达一百万个场景的问题实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
期刊最新文献
Optimal Routing Under Demand Surges: The Value of Future Arrival Rates Demand Estimation Under Uncertain Consideration Sets Optimal Routing to Parallel Servers in Heavy Traffic The When and How of Delegated Search A Data-Driven Approach to Beating SAA Out of Sample
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1