Development of a Density Gauge for Measuring Water and Mud Density based on a Radioactive Technique

Aloysius Bagyo Widagdo
{"title":"Development of a Density Gauge for Measuring Water and Mud Density based on a Radioactive Technique","authors":"Aloysius Bagyo Widagdo","doi":"10.22146/jcef.3797","DOIUrl":null,"url":null,"abstract":"The density or concentration of mud is one of the key variables in studying cohesive sediments, due to being accumulated through settlement and consolidation, as well as resuspended through erosion. This indicates that the proper measurement of sediment density is important. Therefore, this study aims to evaluate the accuracy of density measurement by using the gamma-ray attenuation method as a non-intrusive technique. For Compton Scattering, gamma-ray attenuation was effectively independent of mineralogy, subsequently depending on only the electron density of the material, which is directly related to the bulk density of the mixture. Based on the results, the advantages of utilizing the nucleonic density gauge indicated that the technique was non-intrusive and very flexible for many experimental arrangements, as well as the high accuracy of measurements with errors less than 1%.","PeriodicalId":31890,"journal":{"name":"Journal of the Civil Engineering Forum","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Civil Engineering Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jcef.3797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The density or concentration of mud is one of the key variables in studying cohesive sediments, due to being accumulated through settlement and consolidation, as well as resuspended through erosion. This indicates that the proper measurement of sediment density is important. Therefore, this study aims to evaluate the accuracy of density measurement by using the gamma-ray attenuation method as a non-intrusive technique. For Compton Scattering, gamma-ray attenuation was effectively independent of mineralogy, subsequently depending on only the electron density of the material, which is directly related to the bulk density of the mixture. Based on the results, the advantages of utilizing the nucleonic density gauge indicated that the technique was non-intrusive and very flexible for many experimental arrangements, as well as the high accuracy of measurements with errors less than 1%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于放射性技术的水、泥密度测量仪的研制
泥浆的密度或浓度是研究粘性沉积物的关键变量之一,因为它通过沉降和固结积累,以及通过侵蚀重新悬浮。这表明正确测量沉积物密度是很重要的。因此,本研究旨在评估利用伽马射线衰减法作为非侵入式技术进行密度测量的准确性。对于康普顿散射,伽马射线衰减有效地独立于矿物学,随后仅取决于材料的电子密度,这与混合物的体积密度直接相关。结果表明,该方法具有非侵入性,可灵活地适应多种实验安排,测量精度高,误差小于1%的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
15 weeks
期刊最新文献
Airline Choice Decision for Jakarta-Denpasar Route During the Covid-19 Pandemic Comparative Seismic Analysis of G+20 RC Framed Structure Building for with and without Shear Walls Proposal and Evaluation of Vertical Vibration Theory of Air Caster Seismic Vulnerability Assessment of Regular and Vertically Irregular Residential Buildings in Nepal Numerical Study on the Effects of Helix Diameter and Spacing on the Helical Pile Axial Bearing Capacity in Cohesionless Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1