MuVE: Efficient Multi-Objective View Recommendation for Visual Data Exploration

Humaira Ehsan, M. Sharaf, Panos K. Chrysanthis
{"title":"MuVE: Efficient Multi-Objective View Recommendation for Visual Data Exploration","authors":"Humaira Ehsan, M. Sharaf, Panos K. Chrysanthis","doi":"10.1109/ICDE.2016.7498285","DOIUrl":null,"url":null,"abstract":"To support effective data exploration, there is a well-recognized need for solutions that can automatically recommend interesting visualizations, which reveal useful insights into the analyzed data. However, such visualizations come at the expense of high data processing costs, where a large number of views are generated to evaluate their usefulness. Those costs are further escalated in the presence of numerical dimensional attributes, due to the potentially large number of possible binning aggregations, which lead to a drastic increase in the number of possible visualizations. To address that challenge, in this paper we propose the MuVE scheme for Multi-Objective View Recommendation for Visual Data Exploration. MuVE introduces a hybrid multi-objective utility function, which captures the impact of binning on the utility of visualizations. Consequently, novel algorithms are proposed for the efficient recommendation of data visualizations that are based on numerical dimensions. The main idea underlying MuVE is to incrementally and progressively assess the different benefits provided by a visualization, which allows an early pruning of a large number of unnecessary operations. Our extensive experimental results show the significant gains provided by our proposed scheme.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"41 1","pages":"731-742"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

To support effective data exploration, there is a well-recognized need for solutions that can automatically recommend interesting visualizations, which reveal useful insights into the analyzed data. However, such visualizations come at the expense of high data processing costs, where a large number of views are generated to evaluate their usefulness. Those costs are further escalated in the presence of numerical dimensional attributes, due to the potentially large number of possible binning aggregations, which lead to a drastic increase in the number of possible visualizations. To address that challenge, in this paper we propose the MuVE scheme for Multi-Objective View Recommendation for Visual Data Exploration. MuVE introduces a hybrid multi-objective utility function, which captures the impact of binning on the utility of visualizations. Consequently, novel algorithms are proposed for the efficient recommendation of data visualizations that are based on numerical dimensions. The main idea underlying MuVE is to incrementally and progressively assess the different benefits provided by a visualization, which allows an early pruning of a large number of unnecessary operations. Our extensive experimental results show the significant gains provided by our proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向可视化数据探索的高效多目标视图推荐
为了支持有效的数据探索,有一个公认的解决方案,可以自动推荐有趣的可视化,从而揭示对分析数据的有用见解。然而,这样的可视化是以高昂的数据处理成本为代价的,因为要生成大量的视图来评估它们的有用性。这些成本在存在数值维度属性时进一步升级,因为潜在的大量可能的分组聚合导致可能的可视化数量急剧增加。为了解决这一挑战,本文提出了用于视觉数据探索的多目标视图推荐的MuVE方案。MuVE引入了一个混合的多目标效用函数,它捕获了分组对可视化效用的影响。因此,提出了新的算法,以有效地推荐基于数值维度的数据可视化。MuVE的主要思想是逐步地评估可视化所提供的不同好处,这允许对大量不必要的操作进行早期修剪。广泛的实验结果表明,我们提出的方案提供了显著的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1