Structural Characterization of Commercial Graphite and Graphene Materials

I. Low, H. Albetran, Michael Degiorgio
{"title":"Structural Characterization of Commercial Graphite and Graphene Materials","authors":"I. Low, H. Albetran, Michael Degiorgio","doi":"10.33696/nanotechnol.1.005","DOIUrl":null,"url":null,"abstract":"Honeycomb hexagonal carbon atoms in graphite exist as crystalline hexagonal (2H) or rhombohedral (3R) phases. Carbon layers exist in an ABAB sequence in the commonly occurring 2H graphite structure with B layers shifted to a registered position relative to the A layers. The ABCABC stacking sequence in the 3R structure has C and B layers shifted by the same distance relative to the B and A layers, respectively [4]. Although highly ordered/ oriented graphite has a 2H hexagonal structure, a minor fraction of the 3R rhombohedral phase may remain in high-quality samples [5]. The discovery that the special allotrope of carbon, graphene, can be fabricated by using the scotch tape approach to produce a single layer of graphite, and the thinnestand strongest-known material universally, led to an increase in its popularity [6]. Graphene is often termed bi-, tri-, or few-layered (4 to 10 layers). Two-dimensional graphene consists of a sp2-hybridized carbon monolayered sheet network of densely packed rhombohedral-arranged honeycomb hexagonal crystal lattices and contains up to a dozen shells [7,8]. Graphene’s properties make it suitable in a variety of applications, such as batteries, sensors, structural composites, functional inks, electron emission displays, catalyst supports, in the biomedical field, and potentially in other future research fields [1-3,8-16].","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotechnology and nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/nanotechnol.1.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Honeycomb hexagonal carbon atoms in graphite exist as crystalline hexagonal (2H) or rhombohedral (3R) phases. Carbon layers exist in an ABAB sequence in the commonly occurring 2H graphite structure with B layers shifted to a registered position relative to the A layers. The ABCABC stacking sequence in the 3R structure has C and B layers shifted by the same distance relative to the B and A layers, respectively [4]. Although highly ordered/ oriented graphite has a 2H hexagonal structure, a minor fraction of the 3R rhombohedral phase may remain in high-quality samples [5]. The discovery that the special allotrope of carbon, graphene, can be fabricated by using the scotch tape approach to produce a single layer of graphite, and the thinnestand strongest-known material universally, led to an increase in its popularity [6]. Graphene is often termed bi-, tri-, or few-layered (4 to 10 layers). Two-dimensional graphene consists of a sp2-hybridized carbon monolayered sheet network of densely packed rhombohedral-arranged honeycomb hexagonal crystal lattices and contains up to a dozen shells [7,8]. Graphene’s properties make it suitable in a variety of applications, such as batteries, sensors, structural composites, functional inks, electron emission displays, catalyst supports, in the biomedical field, and potentially in other future research fields [1-3,8-16].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商用石墨和石墨烯材料的结构表征
石墨中的蜂窝六方碳原子以结晶六方(2H)或菱形(3R)相存在。在常见的2H石墨结构中,碳层以ABAB顺序存在,B层相对于a层移位到一个注册位置。3R结构的ABCABC堆叠序列中,C层和B层相对于B层和A层分别移动了相同的距离[4]。尽管高度有序/取向的石墨具有2H六边形结构,但在高质量的样品中仍可能保留少量的3R菱形相[5]。碳的特殊同素异形体,石墨烯,可以通过使用透明胶带的方法来制造单层石墨,这是普遍已知的最薄、最坚固的材料,这一发现使其越来越受欢迎[6]。石墨烯通常被称为双层、三层或少层(4至10层)。二维石墨烯由sp2杂化碳单层片网络组成,该网络由密集排列的菱形排列的蜂窝状六方晶格组成,并包含多达十二个壳层[7,8]。石墨烯的特性使其适用于各种应用,如电池、传感器、结构复合材料、功能油墨、电子发射显示器、催化剂支撑、生物医学领域,以及潜在的其他未来研究领域[1-3,8-16]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of Stability of Early Loaded Nano Coated Hydroxyapatite Implants in Posterior Maxilla Oxidation and TD-DFT of Toxic Acriflavine Hydrochloride Dye by Potassium Permanganate in Neutral Media: Kinetics and Removal of Dyes from Wastewater Immobilized Cell Bioreactor Industrialization in the Development of an Innovative Optical Biosensor Technology Theoretical Investigations of Dye-Sensitized Solar Cells Promoting Carbon Dioxide Reduction via Operando Surface Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1