Personalized Online Spell Correction for Personal Search

Jai Gupta, Zhen Qin, Michael Bendersky, Donald Metzler
{"title":"Personalized Online Spell Correction for Personal Search","authors":"Jai Gupta, Zhen Qin, Michael Bendersky, Donald Metzler","doi":"10.1145/3308558.3313706","DOIUrl":null,"url":null,"abstract":"Spell correction is a must-have feature for any modern search engine in applications such as web or e-commerce search. Typical spell correction solutions used in production systems consist of large indexed lookup tables based on a global model trained across many users over a large scale web corpus or a query log. For search over personal corpora, such as email, this global solution is not sufficient, as it ignores the user's personal lexicon. Without personalization, global spelling fails to correct tail queries drawn from a user's own, often idiosyncratic, lexicon. Personalization using existing algorithms is difficult due to resource constraints and unavailability of sufficient data to build per-user models. In this work, we propose a simple and effective personalized spell correction solution that augments existing global solutions for search over private corpora. Our event driven spell correction candidate generation method is specifically designed with personalization as the key construct. Our novel spell correction and query completion algorithms do not require complex model training and is highly efficient. The proposed solution has shown over 30% click-through rate gain on affected queries when evaluated against a range of strong commercial personal search baselines - Google's Gmail, Drive, and Calendar search production systems.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Spell correction is a must-have feature for any modern search engine in applications such as web or e-commerce search. Typical spell correction solutions used in production systems consist of large indexed lookup tables based on a global model trained across many users over a large scale web corpus or a query log. For search over personal corpora, such as email, this global solution is not sufficient, as it ignores the user's personal lexicon. Without personalization, global spelling fails to correct tail queries drawn from a user's own, often idiosyncratic, lexicon. Personalization using existing algorithms is difficult due to resource constraints and unavailability of sufficient data to build per-user models. In this work, we propose a simple and effective personalized spell correction solution that augments existing global solutions for search over private corpora. Our event driven spell correction candidate generation method is specifically designed with personalization as the key construct. Our novel spell correction and query completion algorithms do not require complex model training and is highly efficient. The proposed solution has shown over 30% click-through rate gain on affected queries when evaluated against a range of strong commercial personal search baselines - Google's Gmail, Drive, and Calendar search production systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
个人搜索的个性化在线拼写纠正
拼写校正是任何现代搜索引擎在网络或电子商务搜索等应用程序中必备的功能。在生产系统中使用的典型拼写纠正解决方案由基于全局模型的大型索引查找表组成,该模型在大规模web语料库或查询日志上对许多用户进行了训练。对于个人语料库(如电子邮件)的搜索,这种全局解决方案是不够的,因为它忽略了用户的个人词汇。如果没有个性化,全局拼写就无法纠正从用户自己的(通常是特殊的)词汇中提取的尾部查询。由于资源限制和无法获得足够的数据来构建每个用户模型,使用现有算法进行个性化是困难的。在这项工作中,我们提出了一个简单有效的个性化拼写纠正方案,增加了现有的全局解决方案在私有语料库上的搜索。我们的事件驱动拼写纠错候选生成方法是专门以个性化为关键结构设计的。我们的新拼写校正和查询补全算法不需要复杂的模型训练,而且效率很高。当与一系列强大的商业个人搜索基准(谷歌的Gmail、Drive和Calendar搜索生产系统)进行评估时,所提出的解决方案显示,受影响查询的点击率提高了30%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1