P. Goharian, A. Aghaei, B. Eftekhari Yekta, S. Banijamali
{"title":"Lithium ion conductivity, crystallization tendency, and microstructural evolution of LiZrxTi2-x(PO4)3 NASICON glass-ceramics (x = 0 - 0.4)","authors":"P. Goharian, A. Aghaei, B. Eftekhari Yekta, S. Banijamali","doi":"10.53063/synsint.2023.32148","DOIUrl":null,"url":null,"abstract":"In this research, NASICON type (LiZrXTi2-X(PO4)3) glass-ceramics were fabricated (x = 0.1, 0.2, 0.3, 0.4). Lithium-ion conductivity along with the crystallization tendency and microstructural features were examined in this regard. Parent glasses obtained through melt quenching were converted to the glass-ceramic specimens after one-step heat treatment procedure. The resultant glass-ceramics were deeply explored by means of different techniques including scanning electron microscope, differential thermal analysis, X-ray diffractometry, and ionic conductivity measurements. According to the obtained results, presence of Zr4+ ions in the glass network and its gradual increase caused the enhanced crystallization temperature as well as declined crystallinity and microstructure coarsening. In all studied glass-ceramics, LiT2(PO4)3 solid solution was the dominant crystalline phase and Zr4+ ions partly substituted in the structure of this crystalline phase. Moreover, presence of Zr4+ ions in the glass composition resulted in diminished lithium-ion conductivity of corresponded glass-ceramics at ambient temperature. Consequently, total conductivity of specimen with the highest level of ZrO2 (x = 0.4) was measured to be 0.78 x 10-5 Scm-1, being considerably less than ionic conductivity of the base (x = 0) glass-ceramic (3.04 x 10-5 Scm-1). It seems that less crystallinity of ZrO2 containing glass-ceramics decreases required connectivity between the lithium-ion free paths and is responsible for the diminished ionic conductivity of these specimens.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":"38 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2023.32148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this research, NASICON type (LiZrXTi2-X(PO4)3) glass-ceramics were fabricated (x = 0.1, 0.2, 0.3, 0.4). Lithium-ion conductivity along with the crystallization tendency and microstructural features were examined in this regard. Parent glasses obtained through melt quenching were converted to the glass-ceramic specimens after one-step heat treatment procedure. The resultant glass-ceramics were deeply explored by means of different techniques including scanning electron microscope, differential thermal analysis, X-ray diffractometry, and ionic conductivity measurements. According to the obtained results, presence of Zr4+ ions in the glass network and its gradual increase caused the enhanced crystallization temperature as well as declined crystallinity and microstructure coarsening. In all studied glass-ceramics, LiT2(PO4)3 solid solution was the dominant crystalline phase and Zr4+ ions partly substituted in the structure of this crystalline phase. Moreover, presence of Zr4+ ions in the glass composition resulted in diminished lithium-ion conductivity of corresponded glass-ceramics at ambient temperature. Consequently, total conductivity of specimen with the highest level of ZrO2 (x = 0.4) was measured to be 0.78 x 10-5 Scm-1, being considerably less than ionic conductivity of the base (x = 0) glass-ceramic (3.04 x 10-5 Scm-1). It seems that less crystallinity of ZrO2 containing glass-ceramics decreases required connectivity between the lithium-ion free paths and is responsible for the diminished ionic conductivity of these specimens.