A column store engine for real-time streaming analytics

Alex Skidanov, Anders J. Papito, A. Prout
{"title":"A column store engine for real-time streaming analytics","authors":"Alex Skidanov, Anders J. Papito, A. Prout","doi":"10.1109/ICDE.2016.7498332","DOIUrl":null,"url":null,"abstract":"This paper describes novel aspects of the column store implemented in the MemSQL database engine and describes the design choices made to support real-time streaming workloads. Column stores have traditionally been restricted to data warehouse scenarios where low latency queries are a secondary goal, and where restricting data ingestion to be offline, batched, append-only, or some combination thereof is acceptable. In contrast, the MemSQL column store implementation treats low latency queries and ongoing writes as first class citizens, with a focus on avoiding interference between read, ingest, update, and storage optimization workloads through the use of fragmented snapshot transactions and optimistic storage reordering. This implementation broadens the range of serviceable column store workloads to include those with more stringent demands on query and data latency, such as those backing operational systems used by adtech, financial services, fraud detection and other real-time or data streaming applications.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"139 1","pages":"1287-1297"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper describes novel aspects of the column store implemented in the MemSQL database engine and describes the design choices made to support real-time streaming workloads. Column stores have traditionally been restricted to data warehouse scenarios where low latency queries are a secondary goal, and where restricting data ingestion to be offline, batched, append-only, or some combination thereof is acceptable. In contrast, the MemSQL column store implementation treats low latency queries and ongoing writes as first class citizens, with a focus on avoiding interference between read, ingest, update, and storage optimization workloads through the use of fragmented snapshot transactions and optimistic storage reordering. This implementation broadens the range of serviceable column store workloads to include those with more stringent demands on query and data latency, such as those backing operational systems used by adtech, financial services, fraud detection and other real-time or data streaming applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于实时流分析的列存储引擎
本文描述了在MemSQL数据库引擎中实现的列存储的新方面,并描述了为支持实时流工作负载所做的设计选择。列存储传统上仅限于数据仓库场景,在这些场景中,低延迟查询是次要目标,并且可以将数据摄取限制为脱机、批处理、仅追加或其某种组合。相比之下,MemSQL列存储实现将低延迟查询和正在进行的写入视为头等大事,重点是通过使用碎片快照事务和乐观存储重排序来避免读取、摄取、更新和存储优化工作负载之间的干扰。这种实现扩大了可服务列存储工作负载的范围,包括那些对查询和数据延迟有更严格要求的工作负载,例如adtech、金融服务、欺诈检测和其他实时或数据流应用程序使用的后台操作系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1