Jungyoon Kim, Tianyi Zhang, Q. Guan, J. Sartori, Lauren E. Linderman, V. Mandic, T. Cui
{"title":"Polymer based Acoustic Wave Sensor Using Hot Embossing Technique","authors":"Jungyoon Kim, Tianyi Zhang, Q. Guan, J. Sartori, Lauren E. Linderman, V. Mandic, T. Cui","doi":"10.1109/Transducers50396.2021.9495735","DOIUrl":null,"url":null,"abstract":"The objective of this research is to develop a highly sensitive acoustic wave sensor using a tunneling current. The tunneling current device is fabricated with the hot embossing technology. Since polymethyl methacrylate (PMMA) is less expensive, has little stiffness, and is easier to work with micro-machining process compared to traditional silicon-based tunneling sensors, we fabricate the tip structure on the material using the hot embossing process. First, the frequency response of the tunneling device is measured by a piezoelectric transducer (PZT) and laser vibrometer to find the resonance frequency. Then the performance of the device is characterized by measuring the acoustic wave, which has the resonance frequency.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"1 1","pages":"1275-1278"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this research is to develop a highly sensitive acoustic wave sensor using a tunneling current. The tunneling current device is fabricated with the hot embossing technology. Since polymethyl methacrylate (PMMA) is less expensive, has little stiffness, and is easier to work with micro-machining process compared to traditional silicon-based tunneling sensors, we fabricate the tip structure on the material using the hot embossing process. First, the frequency response of the tunneling device is measured by a piezoelectric transducer (PZT) and laser vibrometer to find the resonance frequency. Then the performance of the device is characterized by measuring the acoustic wave, which has the resonance frequency.