{"title":"Developing a Reinforcement Learning based Chess Engine","authors":"Weidong Liao, Andrew Moseman","doi":"10.55632/pwvas.v95i2.990","DOIUrl":null,"url":null,"abstract":"Traditionally, chess engines use handcrafted evaluation functions based on human strategy. Recently, machine learning has been used as an alternative to direct position scoring. However, this typically involves training a model on human matches. Reinforcement learning has been shown to be a viable machine learning approach that, when combined with self play, can train a neural network for chess position evaluation without the need for human domain knowledge. This paper discusses our implementation of a reinforcement learning based chess engine, trained using self play. ","PeriodicalId":92280,"journal":{"name":"Proceedings of the West Virginia Academy of Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the West Virginia Academy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55632/pwvas.v95i2.990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Traditionally, chess engines use handcrafted evaluation functions based on human strategy. Recently, machine learning has been used as an alternative to direct position scoring. However, this typically involves training a model on human matches. Reinforcement learning has been shown to be a viable machine learning approach that, when combined with self play, can train a neural network for chess position evaluation without the need for human domain knowledge. This paper discusses our implementation of a reinforcement learning based chess engine, trained using self play.