Content Based Image Retrieval Using Gray Level Co-Occurrence Matrix to Detect Pneumonia in X-Ray Thorax Image

Wilis Kaswidjanti, B. Yuwono, N. Azizah, Nurheri Cahyana
{"title":"Content Based Image Retrieval Using Gray Level Co-Occurrence Matrix to Detect Pneumonia in X-Ray Thorax Image","authors":"Wilis Kaswidjanti, B. Yuwono, N. Azizah, Nurheri Cahyana","doi":"10.31315/TELEMATIKA.V18I2.5508","DOIUrl":null,"url":null,"abstract":"Purpose:This study aims to detect the presence of pneumonia or not in thorax x-ray images using the Gray Level Co-Occurence Matrix (GLCM) method as well as find out the accuracy of the accuracy of pneumonia detection accuracy.Design/methodology/approach:The process of detecting pneumonia in thorax x-ray images can use Content Based Image Retriveal (CBIR). CBIR is an image search method by comparing the input image feature with the image feature in the database. Extraction features x-ray texture of thorax in pneumonia detection using Color Histogram, Discrete Cosine Transform and Gray Level Cooccurence Matrix (GLCM). From the day of extraction the feature will be carried out similarity measurements with database images using Euclidean Distance..Findings/result: The test results showed that the GLCM extraction feature with euclidean distance similarity measurements gained 95% accuracy on 100 training data and 20 test data, with the number of images displayed 6. Whereas when testing using data that has been trained produces 100% accuracy.Originality/value/state of the art:The difference between this study and previous research is in the pre-processing method section of imagery. This pre-processing process, x-ray image of thorax is carried out color histogram and discrete cosine transform process. Then continued the extraction of features using GLCM. The output of this system is the result of detection whether normal or pneumonia. Tujuan:Penelitian ini bertujuan untuk mendeteksi adanya Pneumonia atau tidak pada citra x-ray thorax menggunakan metode Gray Level Co-Occurence Matrix (GLCM) serta mengetahui akurasi tingkat akurasi deteksi pneumonia.Perancangan/metode/pendekatan:Proses deteksi penyakit Pneumonia pada citra x-ray thorax dapat menggunakan Content Based Image Retriveal (CBIR). CBIR adalah suatu metode pencarian citra dengan melakukan perbandingan antara fitur citra input dengan fitur citra yang ada didalam database. Ekstraksi  fitur tekstur x-ray thorax dalam deteksi pneumonia menggunakan Color Histogram, Discrete Cosine Transform dan Gray Level Cooccurence Matrix (GLCM). Dari hari ekstraksi fitur tersebut akan dilakukan pengukuran kemiripan dengan citra database menggunakan jarak Euclidean Distance.Hasil:Hasil pengujian menunjukkan bahwa fitur ekstraksi GLCM dengan pengukuran kemiripan Euclidean Distance diperoleh akurasi sebesar 95% pada data latih 100 dan data uji 20, dengan jumlah citra yang ditampilkan 6. Sedangkan bila pengujian menggunakan data yang sudah dilatihkan menghasilkan akurasi 100%.State of the art:Perbedaan penelitian ini dengan penelitian sebelumnya adalah pada bagian metode pre processing citra. Proses pre processing  ini,  citra x-ray thorax di lakukan proses Color Histogram dan Discrete Cosine Transform. Kemudian dilanjutkan ekstraksi fitur menggunakan GLCM. Output dari sistem ini berupa hasil deteksi apakah normal atau pneumonia.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/TELEMATIKA.V18I2.5508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose:This study aims to detect the presence of pneumonia or not in thorax x-ray images using the Gray Level Co-Occurence Matrix (GLCM) method as well as find out the accuracy of the accuracy of pneumonia detection accuracy.Design/methodology/approach:The process of detecting pneumonia in thorax x-ray images can use Content Based Image Retriveal (CBIR). CBIR is an image search method by comparing the input image feature with the image feature in the database. Extraction features x-ray texture of thorax in pneumonia detection using Color Histogram, Discrete Cosine Transform and Gray Level Cooccurence Matrix (GLCM). From the day of extraction the feature will be carried out similarity measurements with database images using Euclidean Distance..Findings/result: The test results showed that the GLCM extraction feature with euclidean distance similarity measurements gained 95% accuracy on 100 training data and 20 test data, with the number of images displayed 6. Whereas when testing using data that has been trained produces 100% accuracy.Originality/value/state of the art:The difference between this study and previous research is in the pre-processing method section of imagery. This pre-processing process, x-ray image of thorax is carried out color histogram and discrete cosine transform process. Then continued the extraction of features using GLCM. The output of this system is the result of detection whether normal or pneumonia. Tujuan:Penelitian ini bertujuan untuk mendeteksi adanya Pneumonia atau tidak pada citra x-ray thorax menggunakan metode Gray Level Co-Occurence Matrix (GLCM) serta mengetahui akurasi tingkat akurasi deteksi pneumonia.Perancangan/metode/pendekatan:Proses deteksi penyakit Pneumonia pada citra x-ray thorax dapat menggunakan Content Based Image Retriveal (CBIR). CBIR adalah suatu metode pencarian citra dengan melakukan perbandingan antara fitur citra input dengan fitur citra yang ada didalam database. Ekstraksi  fitur tekstur x-ray thorax dalam deteksi pneumonia menggunakan Color Histogram, Discrete Cosine Transform dan Gray Level Cooccurence Matrix (GLCM). Dari hari ekstraksi fitur tersebut akan dilakukan pengukuran kemiripan dengan citra database menggunakan jarak Euclidean Distance.Hasil:Hasil pengujian menunjukkan bahwa fitur ekstraksi GLCM dengan pengukuran kemiripan Euclidean Distance diperoleh akurasi sebesar 95% pada data latih 100 dan data uji 20, dengan jumlah citra yang ditampilkan 6. Sedangkan bila pengujian menggunakan data yang sudah dilatihkan menghasilkan akurasi 100%.State of the art:Perbedaan penelitian ini dengan penelitian sebelumnya adalah pada bagian metode pre processing citra. Proses pre processing  ini,  citra x-ray thorax di lakukan proses Color Histogram dan Discrete Cosine Transform. Kemudian dilanjutkan ekstraksi fitur menggunakan GLCM. Output dari sistem ini berupa hasil deteksi apakah normal atau pneumonia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的图像检索:灰度共生矩阵检测x射线胸片肺炎
目的:本研究旨在利用灰度共现矩阵(GLCM)方法检测胸腔x线图像是否存在肺炎,并找出肺炎检测准确率的准确性。设计/方法/方法:在胸部x线图像中检测肺炎的过程可以使用基于内容的图像检索(CBIR)。CBIR是一种将输入的图像特征与数据库中的图像特征进行比较的图像搜索方法。利用颜色直方图、离散余弦变换和灰度共生矩阵(GLCM)提取肺炎检测中胸部x射线特征纹理。从提取特征之日起,将使用欧几里得距离与数据库图像进行相似性测量。发现/结果:测试结果表明,基于欧氏距离相似度量的GLCM提取特征在100个训练数据和20个测试数据上获得了95%的准确率,显示的图像数量为6。然而,当使用经过训练的数据进行测试时,会产生100%的准确性。原创性/价值/艺术水平:本研究与以往研究的不同之处在于图像预处理方法部分。本预处理过程中,对胸部x射线图像进行了颜色直方图和离散余弦变换处理。然后继续使用GLCM进行特征提取。该系统的输出是检测正常或肺炎的结果。图juan:Penelitian ini bertujuan untuk mendeteksi adanya肺炎,x线胸透,蒙古纳坎方法,灰度共现矩阵(GLCM),显示蒙古纳坎与阿古纳坎肺炎。Perancangan/ method /pendekatan:研究基于内容的图像检索(Content Based Image retrieval, CBIR)的肺炎x线胸片检测方法。CBIR adalah suatu方法,彭安柑橘,登根,melakukan, perbandbandan和antara fitcitra输入登根fitcitra yang ada didalam数据库。彩色直方图,离散余弦变换和灰度共生矩阵(GLCM)。欧几里得距离(欧几里得距离)哈西尔:哈西尔企鹅menunjukkan bahwa fitur ekstraksi GLCM登干企鹅kmiripan欧几里得距离diperoleh akurasi sebesar 95%帕达数据latih 100丹数据uji 20,登干jumlah citra yang ditampilkan 6。Sedangkan bila penguin menggunakan数据yang sudah dilatihkan menghasilkan akurasi 100%。现有技术现状:Perbedaan penelitian ini dengan penelitian sebelumnya adalah padbagian预处理柑橘的方法。过程预处理ini,柠檬酸x射线胸片迪拉坎处理颜色直方图和离散余弦变换。Kemudian dilanjutkan ekstraksi fitur menggunakan GLCM。输出达里系统异常,可诊断为正常肺炎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
期刊最新文献
Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization Optimizing Clustering of Indonesian Text Data Using Particle Swarm Optimization Algorithm: A Case Study of the Quran Translation Monitoring Development Board based on InfluxDB and Grafana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1