Observed Responses of a Saturated Sand under Constant Deviatoric Stress Path in Drained Triaxial tests over a Range of Applied Shear Stress

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-01-31 DOI:10.1680/jgeen.21.00086
Zhiyi Zhao, Yanli Dong, Zhaopeng Zhang, Ying Gao, Xiaoshuang Zhang
{"title":"Observed Responses of a Saturated Sand under Constant Deviatoric Stress Path in Drained Triaxial tests over a Range of Applied Shear Stress","authors":"Zhiyi Zhao, Yanli Dong, Zhaopeng Zhang, Ying Gao, Xiaoshuang Zhang","doi":"10.1680/jgeen.21.00086","DOIUrl":null,"url":null,"abstract":"The soil in embankment dams and slopes may accumulate irreversible deformation due to variation of water level. During that process, soil skeleton experiences constant deviatoric stress path, along with cyclic mean effective stress. In this work, triaxial drained tests were conducted under low rate of strain on saturated sand to investigate the strain response along such stress path, considering the influence of loading amplitude. Test results demonstrated that volumetric strain of saturated sand was diverse, when the consolidation stress conditions were different. When consolidation deviatoric stress was increased from 300 kPa to 900 kPa, the effect of amplitude of cyclic on the volumetric strain is strengthened, while the cumulative effect is weakened. The shear strain curves under different loading amplitudes were parallel to each other, no matter what the consolidation stress condition was. However, the cumulative shear strain showed great differences. Motivated by the effect of loading amplitude, the accumulation of shear strain was increased. While the consolidation deviatoric stress was held constant at a low stress level, the effect of loading amplitude on volumetric strain was greater than that on shear strain. However, with the enhancement of stress level, the effect on shear strain would be significantly enhanced.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jgeen.21.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The soil in embankment dams and slopes may accumulate irreversible deformation due to variation of water level. During that process, soil skeleton experiences constant deviatoric stress path, along with cyclic mean effective stress. In this work, triaxial drained tests were conducted under low rate of strain on saturated sand to investigate the strain response along such stress path, considering the influence of loading amplitude. Test results demonstrated that volumetric strain of saturated sand was diverse, when the consolidation stress conditions were different. When consolidation deviatoric stress was increased from 300 kPa to 900 kPa, the effect of amplitude of cyclic on the volumetric strain is strengthened, while the cumulative effect is weakened. The shear strain curves under different loading amplitudes were parallel to each other, no matter what the consolidation stress condition was. However, the cumulative shear strain showed great differences. Motivated by the effect of loading amplitude, the accumulation of shear strain was increased. While the consolidation deviatoric stress was held constant at a low stress level, the effect of loading amplitude on volumetric strain was greater than that on shear strain. However, with the enhancement of stress level, the effect on shear strain would be significantly enhanced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恒定偏应力路径下排水三轴试验饱和砂土在施加剪切应力范围内的响应观察
由于水位的变化,堤防、坝体和边坡中的土体会发生不可逆变形。在此过程中,土骨架经历了恒定的偏应力路径,并伴随着循环平均有效应力。本文在饱和砂土上进行了低应变速率下的三轴排水试验,考虑加载幅值的影响,研究了该应力路径下的应变响应。试验结果表明,在固结应力条件不同的情况下,饱和砂土的体积应变是不同的。当固结偏应力从300 kPa增加到900 kPa时,循环幅值对体应变的影响增强,累积效应减弱。无论固结应力条件如何,不同加载幅值下的剪切应变曲线都是平行的。但累积剪切应变差异较大。受加载幅值的影响,剪切应变的累积量增大。在低应力水平下固结偏应力保持不变时,加载幅值对体应变的影响大于对剪切应变的影响。但随着应力水平的提高,对剪切应变的影响会显著增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1