Seeding Diversity into AI Art

Intech Pub Date : 2022-05-02 DOI:10.48550/arXiv.2205.00804
Marvin Zammit, Antonios Liapis, Georgios N. Yannakakis
{"title":"Seeding Diversity into AI Art","authors":"Marvin Zammit, Antonios Liapis, Georgios N. Yannakakis","doi":"10.48550/arXiv.2205.00804","DOIUrl":null,"url":null,"abstract":"This paper argues that generative art driven by conformance to a visual and/or semantic corpus lacks the necessary criteria to be considered creative. Among several issues identified in the literature, we focus on the fact that generative adversarial networks (GANs) that create a single image, in a vacuum, lack a concept of novelty regarding how their product differs from previously created ones. We envision that an algorithm that combines the novelty preservation mechanisms in evolutionary algorithms with the power of GANs can deliberately guide its creative process towards output that is both good and novel. In this paper, we use recent advances in image generation based on semantic prompts using OpenAI's CLIP model, interrupting the GAN's iterative process with short cycles of evolutionary divergent search. The results of evolution are then used to continue the GAN's iterative process; we hypothesise that this intervention will lead to more novel outputs. Testing our hypothesis using novelty search with local competition, a quality-diversity evolutionary algorithm that can increase visual diversity while maintaining quality in the form of adherence to the semantic prompt, we explore how different notions of visual diversity can affect both the process and the product of the algorithm. Results show that even a simplistic measure of visual diversity can help counter a drift towards similar images caused by the GAN. This first experiment opens a new direction for introducing higher intentionality and a more nuanced drive for GANs.","PeriodicalId":13714,"journal":{"name":"Intech","volume":"153 1","pages":"210-219"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.00804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper argues that generative art driven by conformance to a visual and/or semantic corpus lacks the necessary criteria to be considered creative. Among several issues identified in the literature, we focus on the fact that generative adversarial networks (GANs) that create a single image, in a vacuum, lack a concept of novelty regarding how their product differs from previously created ones. We envision that an algorithm that combines the novelty preservation mechanisms in evolutionary algorithms with the power of GANs can deliberately guide its creative process towards output that is both good and novel. In this paper, we use recent advances in image generation based on semantic prompts using OpenAI's CLIP model, interrupting the GAN's iterative process with short cycles of evolutionary divergent search. The results of evolution are then used to continue the GAN's iterative process; we hypothesise that this intervention will lead to more novel outputs. Testing our hypothesis using novelty search with local competition, a quality-diversity evolutionary algorithm that can increase visual diversity while maintaining quality in the form of adherence to the semantic prompt, we explore how different notions of visual diversity can affect both the process and the product of the algorithm. Results show that even a simplistic measure of visual diversity can help counter a drift towards similar images caused by the GAN. This first experiment opens a new direction for introducing higher intentionality and a more nuanced drive for GANs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在AI艺术中植入多样性
本文认为,由符合视觉和/或语义语料库驱动的生成艺术缺乏被认为是创造性的必要标准。在文献中确定的几个问题中,我们关注的是这样一个事实,即在真空中创建单个图像的生成对抗网络(gan)缺乏关于其产品与先前创建的产品有什么不同的新颖性概念。我们设想,一种将进化算法中的新颖性保存机制与gan的力量相结合的算法可以有意识地引导其创造性过程走向既好又新颖的输出。在本文中,我们使用OpenAI的CLIP模型使用基于语义提示的图像生成的最新进展,通过短周期的进化发散搜索中断GAN的迭代过程。然后使用进化的结果继续GAN的迭代过程;我们假设这种干预将导致更多新颖的产出。我们使用带有局部竞争的新颖性搜索来测试我们的假设,这是一种质量多样性进化算法,可以增加视觉多样性,同时保持对语义提示的遵守形式的质量,我们探索了视觉多样性的不同概念如何影响算法的过程和结果。结果表明,即使是简单的视觉多样性测量也可以帮助抵消GAN引起的对相似图像的漂移。第一个实验为引入更高的意向性和更细致的gan驱动开辟了一个新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sistem Aplikasi Layanan Panggilan Montir Berbasis Web untuk Memudahkan Pengendara Menemukan Montir Sistem Informasi Pengelolaan Sampah Rumah Tangga Berbasis Mobile Rancang Bangun Sistem Informasi Perpustakaan Berbasis Web Pada SMAN 10 OKU Aplikasi Edukasi Belajar ‘Joykidz’ Untuk Anak Usia 4 Hingga 6 Tahun Menggunakan MIT App Inventor Berbasis Android Perancangan Sistem Presensi Online Berbasis Granted Validitas Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1