Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks

Bao Liu, Brandon Wang
{"title":"Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks","authors":"Bao Liu, Brandon Wang","doi":"10.7873/DATE2014.256","DOIUrl":null,"url":null,"abstract":"Hardware is the foundation and the root of trust of any security system. However, in today's global IC industry, an IP provider, an IC design house, a CAD company, or a foundry may subvert a VLSI system with back doors or logic bombs. Such a supply chain adversary's capability is rooted in his knowledge on the hardware design. Successful hardware design obfuscation would severely limit a supply chain adversary's capability if not preventing all supply chain attacks. However, not all designs are obfuscatable in traditional technologies. We propose to achieve ASIC design obfuscation based on embedded reconfigurable logic which is determined by the end user and unknown to any party in the supply chain. Combined with other security techniques, embedded reconfigurable logic can provide the root of ASIC design obfuscation, data confidentiality and tamper-proofness. As a case study, we evaluate hardware-based code injection attacks and reconfiguration-based instruction set obfuscation based on an open source SPARC processor LEON2. We prevent program monitor Trojan attacks and increase the area of a minimum code injection Trojan with a 1KB ROM by 2.38% for every 1% area increase of the LEON2 processor.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"39 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE2014.256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

Abstract

Hardware is the foundation and the root of trust of any security system. However, in today's global IC industry, an IP provider, an IC design house, a CAD company, or a foundry may subvert a VLSI system with back doors or logic bombs. Such a supply chain adversary's capability is rooted in his knowledge on the hardware design. Successful hardware design obfuscation would severely limit a supply chain adversary's capability if not preventing all supply chain attacks. However, not all designs are obfuscatable in traditional technologies. We propose to achieve ASIC design obfuscation based on embedded reconfigurable logic which is determined by the end user and unknown to any party in the supply chain. Combined with other security techniques, embedded reconfigurable logic can provide the root of ASIC design obfuscation, data confidentiality and tamper-proofness. As a case study, we evaluate hardware-based code injection attacks and reconfiguration-based instruction set obfuscation based on an open source SPARC processor LEON2. We prevent program monitor Trojan attacks and increase the area of a minimum code injection Trojan with a 1KB ROM by 2.38% for every 1% area increase of the LEON2 processor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对供应链攻击的嵌入式可重构ASIC设计混淆逻辑
硬件是任何安全系统信任的基础和根源。然而,在当今全球集成电路产业中,IP提供商、集成电路设计公司、CAD公司或代工厂都可能通过后门或逻辑炸弹颠覆VLSI系统。这样一个供应链对手的能力根植于他对硬件设计的了解。如果不能阻止所有供应链攻击,成功的硬件设计混淆将严重限制供应链对手的能力。然而,并非所有的设计在传统技术中都是可混淆的。我们建议实现基于嵌入式可重构逻辑的ASIC设计混淆,该逻辑由最终用户确定,供应链中的任何一方都不知道。与其他安全技术相结合,嵌入式可重构逻辑可以提供ASIC设计混淆,数据保密性和防篡改的根源。作为案例研究,我们评估了基于硬件的代码注入攻击和基于开源SPARC处理器LEON2的基于重新配置的指令集混淆。我们防止了程序监控木马的攻击,并且在一个1KB ROM的最小代码注入木马的面积每增加1%,就会增加2.38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple interpolants for linear arithmetic Modeling steep slope devices: From circuits to architectures Software-based Pauli tracking in fault-tolerant quantum circuits Using guided local search for adaptive resource reservation in large-scale embedded systems Emulation-based robustness assessment for automotive smart-power ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1