Using guided local search for adaptive resource reservation in large-scale embedded systems

Timon D. ter Braak
{"title":"Using guided local search for adaptive resource reservation in large-scale embedded systems","authors":"Timon D. ter Braak","doi":"10.7873/DATE.2014.171","DOIUrl":null,"url":null,"abstract":"To maintain a predictable execution environment, an embedded system must ensure that applications are, in advance, provided with sufficient resources to process tasks, exchange information and to control peripherals. The problem of assigning tasks to processing elements with limited resources, and routing communication channels through a capacitated interconnect is combined into an integer linear programming formulation. We describe a guided local search algorithm to solve this problem at run-time. This algorithm allows for a hybrid strategy where configurations computed at design-time may be used as references to lower the computational overhead at runtime. Computational experiments on a dataset with 100 tasks and 20 processing elements show the effectiveness of this algorithm compared to state-of-the-art solvers CPLEX and Gurobi. The guided local search algorithm finds an initial solution within 100 milliseconds, is competitive for small platforms, scales better with the size of the platform, and has lower memory usage (2-19%).","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

To maintain a predictable execution environment, an embedded system must ensure that applications are, in advance, provided with sufficient resources to process tasks, exchange information and to control peripherals. The problem of assigning tasks to processing elements with limited resources, and routing communication channels through a capacitated interconnect is combined into an integer linear programming formulation. We describe a guided local search algorithm to solve this problem at run-time. This algorithm allows for a hybrid strategy where configurations computed at design-time may be used as references to lower the computational overhead at runtime. Computational experiments on a dataset with 100 tasks and 20 processing elements show the effectiveness of this algorithm compared to state-of-the-art solvers CPLEX and Gurobi. The guided local search algorithm finds an initial solution within 100 milliseconds, is competitive for small platforms, scales better with the size of the platform, and has lower memory usage (2-19%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于引导局部搜索的大规模嵌入式系统自适应资源预留
为了保持可预测的执行环境,嵌入式系统必须确保预先为应用程序提供足够的资源来处理任务、交换信息和控制外设。将资源有限的处理单元分配任务以及通过有容量互连路由通信通道的问题结合到整数线性规划公式中。我们描述了一个在运行时解决这个问题的引导局部搜索算法。该算法支持一种混合策略,其中在设计时计算的配置可以用作引用,以降低运行时的计算开销。在包含100个任务和20个处理元素的数据集上进行的计算实验表明,与最先进的求解器CPLEX和Gurobi相比,该算法是有效的。引导局部搜索算法在100毫秒内找到初始解,对于小型平台具有竞争力,随着平台的大小而更好地扩展,并且具有较低的内存使用(2-19%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple interpolants for linear arithmetic Modeling steep slope devices: From circuits to architectures Software-based Pauli tracking in fault-tolerant quantum circuits Using guided local search for adaptive resource reservation in large-scale embedded systems Emulation-based robustness assessment for automotive smart-power ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1