Object tracking method based on improved particle swarm optimization

郭巳秋 Guo Si-qiu, 许廷发 Xu Ting-fa, 王洪庆 Wang Hong-qing, 张一舟 Zhang Yi-zhou, 申子宜 Shen Zi-yi
{"title":"Object tracking method based on improved particle swarm optimization","authors":"郭巳秋 Guo Si-qiu, 许廷发 Xu Ting-fa, 王洪庆 Wang Hong-qing, 张一舟 Zhang Yi-zhou, 申子宜 Shen Zi-yi","doi":"10.3788/CO.20140705.0759","DOIUrl":null,"url":null,"abstract":"To overcome the limitations of inertia weight adjustment mechanism when the particle swarm optimization algorithm is applied to object tracking,an improved particle swarm optimization object tracking algorithm is proposed. Firstly,the object and the parameters in particle swarm optimization algorithm are initialized. Secondly,the inertia weight adjustment mechanism is improved by using the evolution rate of particle,and the inertia weight is achieved by taking the conditions of different particles in each generation into consideration. Then the speed,the position,the individual optimum and the global optimum of the particles are updated simultaneously while the next iteration is proceeding. Finally,the area which has the largest similarity function value is defined as the object by comparing the fitness value of each particle with the others. Experimental results indicate that the method reduces the iterations to obtain the same fitness value,and improves the operation efficiency by 42. 9% in comparison with the particle swarm optimization object tracking method which uses self-adapted inertia weight adjustment mechanism. The accurate positioning of the object is a-chieved in the case of the similarity function presenting \"multimodal\",and the method is well adapted to the situation when partial occlusion occurs in object tracking.","PeriodicalId":10133,"journal":{"name":"Chinese Journal of Optics and Applied Optics","volume":"7 1","pages":"759-767"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Optics and Applied Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/CO.20140705.0759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome the limitations of inertia weight adjustment mechanism when the particle swarm optimization algorithm is applied to object tracking,an improved particle swarm optimization object tracking algorithm is proposed. Firstly,the object and the parameters in particle swarm optimization algorithm are initialized. Secondly,the inertia weight adjustment mechanism is improved by using the evolution rate of particle,and the inertia weight is achieved by taking the conditions of different particles in each generation into consideration. Then the speed,the position,the individual optimum and the global optimum of the particles are updated simultaneously while the next iteration is proceeding. Finally,the area which has the largest similarity function value is defined as the object by comparing the fitness value of each particle with the others. Experimental results indicate that the method reduces the iterations to obtain the same fitness value,and improves the operation efficiency by 42. 9% in comparison with the particle swarm optimization object tracking method which uses self-adapted inertia weight adjustment mechanism. The accurate positioning of the object is a-chieved in the case of the similarity function presenting "multimodal",and the method is well adapted to the situation when partial occlusion occurs in object tracking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进粒子群优化的目标跟踪方法
为克服粒子群优化算法应用于目标跟踪时惯性权值调整机制的局限性,提出了一种改进的粒子群优化目标跟踪算法。首先,对粒子群算法中的目标和参数进行初始化;其次,利用粒子的演化速率对惯性权值调整机制进行改进,通过考虑每一代不同粒子的情况来实现惯性权值;然后在进行下一次迭代时,同时更新粒子的速度、位置、个体最优和全局最优。最后,通过比较各粒子的适应度值,将相似函数值最大的区域定义为目标。实验结果表明,该方法减少了获得相同适应度值的迭代次数,操作效率提高了42%。与采用自适应惯性权值调整机制的粒子群优化目标跟踪方法进行了比较。在相似度函数呈现“多模态”的情况下,实现了目标的准确定位,该方法很好地适应了目标跟踪中出现局部遮挡的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Validation method of single-channel optical system design of CO2detector SiO 2 包覆对ZnS纳米材料发光的增强机制 热蒸发与离子束溅射制备LaF 3 薄膜的光学特性 TiO 2 纳米线阵列干涉传感器 化学气相沉积法制备Zn 2 GeO 4 纳米线及其发光性质的研究
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1