Secrecy Energy Efficiency in PAPR-Aware Artificial Noise Scheme for Secure Massive MIMO

I. Ajayi, Y. Medjahdi, L. Mroueh, R. Zayani, F. Kaddour
{"title":"Secrecy Energy Efficiency in PAPR-Aware Artificial Noise Scheme for Secure Massive MIMO","authors":"I. Ajayi, Y. Medjahdi, L. Mroueh, R. Zayani, F. Kaddour","doi":"10.1109/EuCNC/6GSummit58263.2023.10188263","DOIUrl":null,"url":null,"abstract":"In this paper, we study the secrecy energy efficiency (SEE) in an artificial noise (AN)-aided secure massive multiple-input multiple-output (MIMO) scheme. The scheme uses instantaneous information to design a peak-to-average power (PAPR)-aware AN that simultaneously improves secrecy and reduces PAPR. High PAPR leads to non-linear in-band signal distortion and out-of-band radiation causing adjacent channel interference. To ensure optimal secrecy performance, high power amplifiers (HPAs) at the base station (BS) are backed off to operate in the linear region only. The amount of back-off needed to ensure linearity of the HPA has a direct impact on the energy efficiency of the system and by extension the SEE. For our scheme, the magnitude of this back-off is determined by the power allocation ratio between the data and AN. Hence, we propose an optimal power allocation ratio for the scheme. This is to ensure a good trade-off between the energy efficiency, security, and reliability of the system. Simulation results show a better SEE performance for our scheme compared to legacy massive MIMO schemes with or without random AN injection. Finally, we study the impact of spatially correlated Rayleigh fading on the proposed scheme.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"27 1","pages":"42-47"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the secrecy energy efficiency (SEE) in an artificial noise (AN)-aided secure massive multiple-input multiple-output (MIMO) scheme. The scheme uses instantaneous information to design a peak-to-average power (PAPR)-aware AN that simultaneously improves secrecy and reduces PAPR. High PAPR leads to non-linear in-band signal distortion and out-of-band radiation causing adjacent channel interference. To ensure optimal secrecy performance, high power amplifiers (HPAs) at the base station (BS) are backed off to operate in the linear region only. The amount of back-off needed to ensure linearity of the HPA has a direct impact on the energy efficiency of the system and by extension the SEE. For our scheme, the magnitude of this back-off is determined by the power allocation ratio between the data and AN. Hence, we propose an optimal power allocation ratio for the scheme. This is to ensure a good trade-off between the energy efficiency, security, and reliability of the system. Simulation results show a better SEE performance for our scheme compared to legacy massive MIMO schemes with or without random AN injection. Finally, we study the impact of spatially correlated Rayleigh fading on the proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全大规模MIMO中papr感知人工噪声方案的保密能量效率
本文研究了人工噪声(an)辅助下的安全海量多输入多输出(MIMO)方案的保密能量效率(SEE)问题。该方案利用瞬时信息设计一个峰值-平均功率(PAPR)感知的AN,同时提高了保密性并降低了PAPR。高PAPR会导致非线性带内信号失真和带外辐射,引起相邻信道干扰。为了保证最佳的保密性能,在基站(BS)上的高功率放大器(hpa)被关闭,只在线性区域中工作。确保HPA线性度所需的回退量直接影响系统的能源效率,进而影响SEE。对于我们的方案,这种回退的大小由数据和AN之间的功率分配比率决定。因此,我们提出了一个最优的功率分配比例。这是为了确保在系统的能源效率、安全性和可靠性之间取得良好的平衡。仿真结果表明,与没有随机AN注入的传统大规模MIMO方案相比,我们的方案具有更好的SEE性能。最后,研究了空间相关瑞利衰落对所提方案的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
385
期刊最新文献
Undersampling and SNR Degradation in Practical Direct RF Sampling Systems Research Challenges in Trustworthy Artificial Intelligence and Computing for Health: The Case of the PRE-ACT project Inter-Satellite Link Prediction for Non-Terrestrial Networks Using Supervised Learning AI-Powered Edge Computing Evolution for Beyond 5G Communication Networks Phase Modulation-based Fronthaul Network for 5G mmWave FR-2 Signal Transmission over Hybrid Links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1