Elevator Traffic Pattern Recognition Based on Density Peak Clustering

Chen Benyao, Ruan Licheng, Ye Jian, Bi Jianzhong, Shi Shenke, Zhu Shaojun, Wu Mao-nian
{"title":"Elevator Traffic Pattern Recognition Based on Density Peak Clustering","authors":"Chen Benyao, Ruan Licheng, Ye Jian, Bi Jianzhong, Shi Shenke, Zhu Shaojun, Wu Mao-nian","doi":"10.1109/IICSPI.2018.8690418","DOIUrl":null,"url":null,"abstract":"Aiming at the shortcomings of traditional methods, this paper proposes an elevator traffic pattern recognition method based on density peak clustering algorithm. This method uses the cluster analysis of the passenger flow data of the previous week to obtain the cluster center coordinates of the corresponding traffic patterns. For real-time changes in elevator traffic data, using 5-minute passenger flow data, the cluster centers are selected based on the highest density and farthest distance from the higher density points, thereby identifying the current traffic pattern. Experiments show that the method can effectively recognize the elevator traffic pattern, is easy to implement, has fast calculation speed, and has a stable clustering effect, and can meet the real-time requirements of the group control system.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"5 1","pages":"587-590"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Aiming at the shortcomings of traditional methods, this paper proposes an elevator traffic pattern recognition method based on density peak clustering algorithm. This method uses the cluster analysis of the passenger flow data of the previous week to obtain the cluster center coordinates of the corresponding traffic patterns. For real-time changes in elevator traffic data, using 5-minute passenger flow data, the cluster centers are selected based on the highest density and farthest distance from the higher density points, thereby identifying the current traffic pattern. Experiments show that the method can effectively recognize the elevator traffic pattern, is easy to implement, has fast calculation speed, and has a stable clustering effect, and can meet the real-time requirements of the group control system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于密度峰值聚类的电梯交通模式识别
针对传统方法的不足,提出了一种基于密度峰值聚类算法的电梯交通模式识别方法。该方法通过对前一周的客流数据进行聚类分析,得到相应交通模式的聚类中心坐标。对于实时变化的电梯交通数据,利用5分钟的客流数据,根据密度最高的点和离密度较高点最远的距离选择聚类中心,从而识别当前的交通模式。实验表明,该方法能有效识别电梯交通模式,易于实现,计算速度快,聚类效果稳定,能满足群控系统的实时性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Functional Safety Analysis and Design of Dual-Motor Hybrid Bus Clutch System Methods of Resource Allocation with Conflict Detection Exploration and Application of Sheet Metal Technology on Pit Package Repairing Study on Standardization of Electrolytic Trace Moisture Meter in Safety Construction of CNG Refueling Station The Research and Analysis of Big Data Application on Distribution Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1