{"title":"Fuzzy regression analysis using neural networks","authors":"Hisao Ishibuchi, Hideo Tanaka","doi":"10.1016/0165-0114(92)90224-R","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose simple but powerful methods for fuzzy regression analysis using neural networks. Since neural networks have high capability as an approximator of nonlinear mappings, the proposed methods can be applied to more complex systems than the existing LP based methods. First we propose learning algorithms of neural networks for determining a nonlinear interval model from the given input-output patterns. A nonlinear interval model whose outputs approximately include all the given patterns can be determined by two neural networks. Next we show two methods for deriving nonlinear fuzzy models from the interval model determined by the proposed algorithms. Nonlinear fuzzy models whose <em>h</em>-level sets approximately include all the given patterns can be derived. Last we show an application of the proposed methods to a real problem.</p></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"50 3","pages":"Pages 257-265"},"PeriodicalIF":3.2000,"publicationDate":"1992-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0165-0114(92)90224-R","citationCount":"143","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/016501149290224R","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 143
Abstract
In this paper, we propose simple but powerful methods for fuzzy regression analysis using neural networks. Since neural networks have high capability as an approximator of nonlinear mappings, the proposed methods can be applied to more complex systems than the existing LP based methods. First we propose learning algorithms of neural networks for determining a nonlinear interval model from the given input-output patterns. A nonlinear interval model whose outputs approximately include all the given patterns can be determined by two neural networks. Next we show two methods for deriving nonlinear fuzzy models from the interval model determined by the proposed algorithms. Nonlinear fuzzy models whose h-level sets approximately include all the given patterns can be derived. Last we show an application of the proposed methods to a real problem.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.