Yarn-dyed Fabric Defect Detection with YOLOV2 Based on Deep Convolution Neural Networks

Hongwei Zhang, Ling-jie Zhang, Pengfei Li, De Gu
{"title":"Yarn-dyed Fabric Defect Detection with YOLOV2 Based on Deep Convolution Neural Networks","authors":"Hongwei Zhang, Ling-jie Zhang, Pengfei Li, De Gu","doi":"10.1109/DDCLS.2018.8516094","DOIUrl":null,"url":null,"abstract":"To reduce labor costs for manual extract image features of yarn-dyed fabric defects, a method based on YOLOV2 is proposed for yarn-dyed fabric defect automatic localization and classification. First, 276 yarn-dyed fabric defect images are collected, preprocessed and labelled. Then, YOLO9000, YOLO-VOC and Tiny YOLO are used to construct fabric defect detection models. Through comparative study, YOLO-VOC is selected to further model improvement by optimize super-parameters of deep convolutional neural network. Finally, the improved deep convolutional neural network is tested for yarn-dyed fabric defect detection on practical fabric images. The experimental results indicate the proposed method is effective and low labor cost for yarn-dyed fabric defect detection.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"65 1","pages":"170-174"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

To reduce labor costs for manual extract image features of yarn-dyed fabric defects, a method based on YOLOV2 is proposed for yarn-dyed fabric defect automatic localization and classification. First, 276 yarn-dyed fabric defect images are collected, preprocessed and labelled. Then, YOLO9000, YOLO-VOC and Tiny YOLO are used to construct fabric defect detection models. Through comparative study, YOLO-VOC is selected to further model improvement by optimize super-parameters of deep convolutional neural network. Finally, the improved deep convolutional neural network is tested for yarn-dyed fabric defect detection on practical fabric images. The experimental results indicate the proposed method is effective and low labor cost for yarn-dyed fabric defect detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积神经网络的YOLOV2色织织物缺陷检测
为了减少人工提取色织疵点图像特征的人工成本,提出了一种基于YOLOV2的色织疵点自动定位分类方法。首先,采集276张色织疵点图像,进行预处理和标记。然后使用YOLO9000、YOLO- voc和Tiny YOLO构建织物缺陷检测模型。通过对比研究,选择YOLO-VOC,通过优化深度卷积神经网络的超参数进一步改进模型。最后,在实际织物图像上对改进的深度卷积神经网络进行了色织疵点检测。实验结果表明,该方法对色织织物疵点检测有效,人工成本低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis of High-speed Train Bogie Based on Spectrogram and Multi-channel Voting Yarn-dyed Fabric Defect Detection with YOLOV2 Based on Deep Convolution Neural Networks On the Design and Analysis of a Learning Control Algorithm for Point-to-point Tracking Tasks Iterative Learning Control for Singular System with An Arbitrary Initial State A Comparative Study of Adaptive Soft Sensors for Quality Prediction in an Industrial Refining Hydrocracking Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1