Intelligent recognition of semantic relationships based on antonymy

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS Multiagent and Grid Systems Pub Date : 2020-01-01 DOI:10.3233/mgs-200332
Hui Guan, Chengzhen Jia, Hongji Yang
{"title":"Intelligent recognition of semantic relationships based on antonymy","authors":"Hui Guan, Chengzhen Jia, Hongji Yang","doi":"10.3233/mgs-200332","DOIUrl":null,"url":null,"abstract":"Since computing semantic similarity tends to simulate the thinking process of humans, semantic dissimilarity must play a part in this process. In this paper, we present a new approach for semantic similarity measuring by taking consideration of dissimilarity into the process of computation. Specifically, the proposed measures explore the potential antonymy in the hierarchical structure of WordNet to represent the dissimilarity between concepts and then combine the dissimilarity with the results of existing methods to achieve semantic similarity results. The relation between parameters and the correlation value is discussed in detail. The proposed model is then applied to different text granularity levels to validate the correctness on similarity measurement. Experimental results show that the proposed approach not only achieves high correlation value against human ratings but also has effective improvement to existing path-distance based methods on the word similarity level, in the meanwhile effectively correct existing sentence similarity method in some cases in Microsoft Research Paraphrase Corpus and SemEval-2014 date set.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-200332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Since computing semantic similarity tends to simulate the thinking process of humans, semantic dissimilarity must play a part in this process. In this paper, we present a new approach for semantic similarity measuring by taking consideration of dissimilarity into the process of computation. Specifically, the proposed measures explore the potential antonymy in the hierarchical structure of WordNet to represent the dissimilarity between concepts and then combine the dissimilarity with the results of existing methods to achieve semantic similarity results. The relation between parameters and the correlation value is discussed in detail. The proposed model is then applied to different text granularity levels to validate the correctness on similarity measurement. Experimental results show that the proposed approach not only achieves high correlation value against human ratings but also has effective improvement to existing path-distance based methods on the word similarity level, in the meanwhile effectively correct existing sentence similarity method in some cases in Microsoft Research Paraphrase Corpus and SemEval-2014 date set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于反义词的语义关系智能识别
由于计算语义相似度倾向于模拟人类的思维过程,语义不相似度必然在这一过程中发挥作用。本文提出了一种在计算过程中考虑语义相似性的语义相似度度量方法。具体而言,所提出的度量方法探索WordNet层次结构中潜在的反义词来表示概念之间的不相似性,然后将不相似性与现有方法的结果结合起来,以获得语义相似性结果。详细讨论了参数与相关值之间的关系。然后将该模型应用于不同的文本粒度级别,以验证相似度度量的正确性。实验结果表明,该方法不仅达到了与人类评分的高相关值,而且在词相似度水平上对现有的基于路径距离的方法有了有效的改进,同时在Microsoft Research释义语料和SemEval-2014数据集上有效地纠正了现有的句子相似度方法在某些情况下的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
期刊最新文献
Blockchain applications for Internet of Things (IoT): A review Sine tangent search algorithm enabled LeNet for cotton crop classification using satellite image Optimization enabled elastic scaling in cloud based on predicted load for resource management Geese jellyfish search optimization trained deep learning for multiclass plant disease detection using leaf images Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1