Hand Tracking Based on Improved Particle Filters with Elliptical Region Covariance Descriptors

Yi Zheng, Ping Zheng
{"title":"Hand Tracking Based on Improved Particle Filters with Elliptical Region Covariance Descriptors","authors":"Yi Zheng, Ping Zheng","doi":"10.1109/ICISCE.2016.92","DOIUrl":null,"url":null,"abstract":"In the process of human computer interaction, hand tracking is of great importance. A practical hand tracking method based on improved particle filters with elliptical region covariance descriptors is proposed. Firstly, an elliptical tracking window containing the hand is determined manually in the initial frame. Based on the HSV color model, the color feature of bare hands is extracted, and color histograms of the target model and the candidate model are obtained. Then the observation likelihood function can be determined. A first-order system equation is used as the motion model. In order to take into account rotation changes of hands, an elliptical region covariance descriptor is used as the target feature model. The particle number threshold is preset, and the particle impoverishment can be improved by resampling method. Experimental results demonstrate that the proposed method can track the moving hand accurately. The proposed hand tracking method can be used in the fields of human computer interaction and augmented reality.","PeriodicalId":6882,"journal":{"name":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2016.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the process of human computer interaction, hand tracking is of great importance. A practical hand tracking method based on improved particle filters with elliptical region covariance descriptors is proposed. Firstly, an elliptical tracking window containing the hand is determined manually in the initial frame. Based on the HSV color model, the color feature of bare hands is extracted, and color histograms of the target model and the candidate model are obtained. Then the observation likelihood function can be determined. A first-order system equation is used as the motion model. In order to take into account rotation changes of hands, an elliptical region covariance descriptor is used as the target feature model. The particle number threshold is preset, and the particle impoverishment can be improved by resampling method. Experimental results demonstrate that the proposed method can track the moving hand accurately. The proposed hand tracking method can be used in the fields of human computer interaction and augmented reality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于椭圆区域协方差描述符改进粒子滤波的手部跟踪
在人机交互过程中,手部跟踪是非常重要的。提出了一种实用的基于椭圆区域协方差描述符改进粒子滤波的手部跟踪方法。首先,在初始帧中手动确定包含手的椭圆跟踪窗口;基于HSV颜色模型,提取徒手的颜色特征,得到目标模型和候选模型的颜色直方图。然后可以确定观测似然函数。采用一阶系统方程作为运动模型。为了考虑手的旋转变化,使用椭圆区域协方差描述子作为目标特征模型。设定粒子数阈值,通过重采样方法改善粒子贫困化。实验结果表明,该方法能够准确地跟踪手部运动。该方法可应用于人机交互和增强现实等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Color Calibration Based on Simulated Annealing Optimization Temperature Analysis in the Fused Deposition Modeling Process Classification of Hyperspectral Image Based on K-Means and Structured Sparse Coding Analysis and Prediction of Epilepsy Based on Visibility Graph Design of Control System for a Rehabilitation Device for Joints of Lower Limbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1