Research on the Effect of Heat Pipe Inclination Angle on Temperature Distribution in Electrical Machines

H. Zhao, Xiaochen Zhang, Xiaorui Zhu, Yue Zhang, Hongyu Yan, Zhihao Niu
{"title":"Research on the Effect of Heat Pipe Inclination Angle on Temperature Distribution in Electrical Machines","authors":"H. Zhao, Xiaochen Zhang, Xiaorui Zhu, Yue Zhang, Hongyu Yan, Zhihao Niu","doi":"10.1109/ITECAsia-Pacific56316.2022.9941772","DOIUrl":null,"url":null,"abstract":"Heat pipes (HPs) are being widely applied in the cooling systems of electrical machines with remarkable cooling effectiveness reported in the existing literature. However, attention is rarely paid to the effect of HP inclination angle on its thermal performance and resulted non-uniform temperature distribution issues in electrical machines. In this article, a dedicated experimental platform is established and the equivalent thermal conductivities of HPs at different inclination angles are accurately measured by experimental tests. On top of that, a 3-D thermal model based on a full-size stator-winding assembly where HPs are evenly inserted into the winding is built and the temperature distribution across the whole winding is comparatively studied under different cooling methods and thermal loads. The results show that the equivalent thermal conductivities of the HPs at different inclination angles vary more than five times, which leads to a maximum temperature difference of up to 4.317°C under the liquid cooling method.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"45 1","pages":"1-6"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

Heat pipes (HPs) are being widely applied in the cooling systems of electrical machines with remarkable cooling effectiveness reported in the existing literature. However, attention is rarely paid to the effect of HP inclination angle on its thermal performance and resulted non-uniform temperature distribution issues in electrical machines. In this article, a dedicated experimental platform is established and the equivalent thermal conductivities of HPs at different inclination angles are accurately measured by experimental tests. On top of that, a 3-D thermal model based on a full-size stator-winding assembly where HPs are evenly inserted into the winding is built and the temperature distribution across the whole winding is comparatively studied under different cooling methods and thermal loads. The results show that the equivalent thermal conductivities of the HPs at different inclination angles vary more than five times, which leads to a maximum temperature difference of up to 4.317°C under the liquid cooling method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电机热管倾角对温度分布影响的研究
热管在电机的冷却系统中得到了广泛的应用,已有文献报道热管具有显著的冷却效果。然而,人们很少关注高压倾角对其热性能的影响以及由此导致的电机温度分布不均匀问题。本文建立了专门的实验平台,通过实验测试,精确测量了不同倾角下hp的等效导热系数。在此基础上,建立了全尺寸定子-绕组均匀插入定子-绕组的三维热模型,对比研究了不同冷却方式和热负荷下整个定子-绕组的温度分布。结果表明:不同倾角下的热导率变化大于5倍,液冷方式下的最大温差可达4.317℃;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
8
期刊最新文献
An Inertia Adjustment Control Strategy of Grid-Forming Electric Vehicle for V2G Application An Improved Control Strategy of PM-Assisted Synchronous Reluctance Machines Based on an Extended State Observer Comparison and evaluation of the thermal performance between SiC-MOSFET and Si-IGBT Analysis and Design of Passive Damping for LC-Equipped Permanent-Magnet Synchronous Machine Drive System Research on dynamic pricing strategy of electric material distribution vehicle based on master-slave game and multi-hot code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1