{"title":"Universal consistency of Wasserstein k-NN classifier: a negative and some positive results","authors":"Donlapark Ponnoprat","doi":"10.1093/imaiai/iaad027","DOIUrl":null,"url":null,"abstract":"\n We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"3 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.