Universal consistency of Wasserstein k-NN classifier: a negative and some positive results

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2023-04-27 DOI:10.1093/imaiai/iaad027
Donlapark Ponnoprat
{"title":"Universal consistency of Wasserstein k-NN classifier: a negative and some positive results","authors":"Donlapark Ponnoprat","doi":"10.1093/imaiai/iaad027","DOIUrl":null,"url":null,"abstract":"\n We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"3 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wasserstein k-NN分类器的普遍一致性:一个否定和一些肯定的结果
研究了Wasserstein距离下概率测度的k近邻分类器(k -NN)。我们证明了$k$-NN分类器在$(0,1)$中支持的测度空间上不是普遍一致的。由于任何欧几里得球都包含$(0,1)$的副本,因此不应期望在基本度量空间或Wasserstein空间本身没有某些限制的情况下获得全称一致性。为此,通过$\sigma $-有限度量维的概念,我们证明了$k$-NN分类器在具有有理质量的离散测度(更一般地说,$\sigma $-有限一致离散测度)的空间上是普遍一致的。此外,通过研究$p=1$和$p=2$的Wasserstein空间的测地线结构,我们证明了$k$-NN分类器在有限集合支持的测度空间、高斯测度空间和小波序列密度有限的测度空间上是普遍一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1