Study of microstructure of dielectric liquid in high electric field

D. Karpov, A. L. Kupershtokh
{"title":"Study of microstructure of dielectric liquid in high electric field","authors":"D. Karpov, A. L. Kupershtokh","doi":"10.1109/ICDL.2014.6893149","DOIUrl":null,"url":null,"abstract":"The method of molecular dynamics (MD) was applied to study the processes in liquid and dense gas under the action of an extremely high electric field. Two following model for a dielectric was used. A substance consisted of the molecules with a constant electrical dipole moment. The parallel code was specially developed using the CUDA technology in order to produce the computations of large ensembles of the molecules with the MD method using the high-performance graphic cards. The correlation function of the orientation of the dipole molecules was calculated for various densities of the substance. The density dependence was studied of the radius of the region in which the ion influences on the molecules with the constant dipole moment. The density dependency of the electric potential well depth near the ion placed in a polar dielectric was obtained. The formation of vapour channels in a liquid dielectric under the action of extremely high electric field (anisotropic spinodal decomposition) was also simulated. It was shown that channels are formed approximately along the electric force lines and the process looks like the formation of cracks in solid body due to mechanical stresses. The results obtained are important for understanding the microprocesses preceding a streamer formation during the process of discharge development in dielectric liquids.","PeriodicalId":6523,"journal":{"name":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","volume":"55 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2014.6893149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The method of molecular dynamics (MD) was applied to study the processes in liquid and dense gas under the action of an extremely high electric field. Two following model for a dielectric was used. A substance consisted of the molecules with a constant electrical dipole moment. The parallel code was specially developed using the CUDA technology in order to produce the computations of large ensembles of the molecules with the MD method using the high-performance graphic cards. The correlation function of the orientation of the dipole molecules was calculated for various densities of the substance. The density dependence was studied of the radius of the region in which the ion influences on the molecules with the constant dipole moment. The density dependency of the electric potential well depth near the ion placed in a polar dielectric was obtained. The formation of vapour channels in a liquid dielectric under the action of extremely high electric field (anisotropic spinodal decomposition) was also simulated. It was shown that channels are formed approximately along the electric force lines and the process looks like the formation of cracks in solid body due to mechanical stresses. The results obtained are important for understanding the microprocesses preceding a streamer formation during the process of discharge development in dielectric liquids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高电场条件下介电液体微观结构的研究
应用分子动力学方法研究了在极高电场作用下液体和稠密气体中的反应过程。电介质采用了以下两种模型。由具有恒定电偶极矩的分子组成的物质。并行代码是利用CUDA技术专门开发的,以便在高性能显卡上使用MD方法进行大分子集合的计算。计算了不同密度下偶极子分子取向的相关函数。研究了离子对偶极矩恒定的分子影响区域半径的密度依赖性。得到了放置在极性电介质中的离子附近的电势井深与密度的关系。模拟了在极高电场作用下(各向异性旋量分解)液体介质中蒸汽通道的形成过程。结果表明:沟槽沿电力线近似形成,其形成过程类似于固体在机械应力作用下裂纹的形成。所得结果对于理解介电液体放电发展过程中流光形成前的微过程具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of the thermal endurance of transformer oil by structural analyses Energy spectrum of vacancies and nanobubbles in condense matter: Crystal melting Methods for monitoring age-related changes in transformer oils Electrohydrodynamic motion due to space-charge limited injection of charges in cyclohexane The effect of surface treatment of silica nanoparticles on the breakdown strength of mineral oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1