How Representative Is a SPARQL Benchmark? An Analysis of RDF Triplestore Benchmarks

Muhammad Saleem, Gábor Szárnyas, Felix Conrads, Syed Ahmad Chan Bukhari, Qaiser Mehmood, A. N. Ngomo
{"title":"How Representative Is a SPARQL Benchmark? An Analysis of RDF Triplestore Benchmarks","authors":"Muhammad Saleem, Gábor Szárnyas, Felix Conrads, Syed Ahmad Chan Bukhari, Qaiser Mehmood, A. N. Ngomo","doi":"10.1145/3308558.3313556","DOIUrl":null,"url":null,"abstract":"Triplestores are data management systems for storing and querying RDF data. Over recent years, various benchmarks have been proposed to assess the performance of triplestores across different performance measures. However, choosing the most suitable benchmark for evaluating triplestores in practical settings is not a trivial task. This is because triplestores experience varying workloads when deployed in real applications. We address the problem of determining an appropriate benchmark for a given real-life workload by providing a fine-grained comparative analysis of existing triplestore benchmarks. In particular, we analyze the data and queries provided with the existing triplestore benchmarks in addition to several real-world datasets. Furthermore, we measure the correlation between the query execution time and various SPARQL query features and rank those features based on their significance levels. Our experiments reveal several interesting insights about the design of such benchmarks. With this fine-grained evaluation, we aim to support the design and implementation of more diverse benchmarks. Application developers can use our result to analyze their data and queries and choose a data management system.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Triplestores are data management systems for storing and querying RDF data. Over recent years, various benchmarks have been proposed to assess the performance of triplestores across different performance measures. However, choosing the most suitable benchmark for evaluating triplestores in practical settings is not a trivial task. This is because triplestores experience varying workloads when deployed in real applications. We address the problem of determining an appropriate benchmark for a given real-life workload by providing a fine-grained comparative analysis of existing triplestore benchmarks. In particular, we analyze the data and queries provided with the existing triplestore benchmarks in addition to several real-world datasets. Furthermore, we measure the correlation between the query execution time and various SPARQL query features and rank those features based on their significance levels. Our experiments reveal several interesting insights about the design of such benchmarks. With this fine-grained evaluation, we aim to support the design and implementation of more diverse benchmarks. Application developers can use our result to analyze their data and queries and choose a data management system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPARQL基准测试的代表性如何?RDF三重存储基准分析
triplestore是用于存储和查询RDF数据的数据管理系统。近年来,人们提出了各种基准来评估不同性能指标下三元存储的性能。然而,在实际设置中为评估triplestore选择最合适的基准并不是一项简单的任务。这是因为triplestore在实际应用程序中部署时会经历不同的工作负载。我们通过对现有triplestore基准进行细粒度比较分析,解决了为给定的实际工作负载确定适当基准的问题。特别地,我们分析了现有triplestore基准测试提供的数据和查询,以及几个真实世界的数据集。此外,我们度量查询执行时间与各种SPARQL查询特性之间的相关性,并根据它们的显著性水平对这些特性进行排序。我们的实验揭示了关于此类基准测试设计的几个有趣的见解。通过这种细粒度的评估,我们的目标是支持更多样化的基准测试的设计和实现。应用程序开发人员可以使用我们的结果来分析他们的数据和查询,并选择数据管理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1