{"title":"ProMT","authors":"Mazen Alwadi, Aziz Mohaisen, Amr Awad","doi":"10.1145/3447818.3460377","DOIUrl":null,"url":null,"abstract":"Current computer systems are vulnerable to a wide range of attacks caused by the proliferation of accelerators, and the fact that current system comprise multiple SoCs provided from different vendors. Thus, major processor vendors are moving towards limiting the trust boundary to the processor chip only as in Intel's SGX, AMD's SME, and ARM's TrustZone. This secure boundary limitation requires protecting the memory content against data remanence attacks, which were performed against DRAM in the form of cold-boot attack and are more successful against NVM due to NVM's data persistency feature. However, implementing secure memory features, such as memory encryption and integrity verification has a non-trivial performance overhead, and can significantly reduce the emerging NVM's expected lifetime. Previous work looked at reducing the overheads of the secure memory implementation by packing more counters into a cache line, increasing the cacheability of security metadata, slightly reducing the size of the integrity tree, or using the ECC chip to store the MAC values. However, the root update process is barely studied, which requires a sequential update of the MAC values in all the integrity tree levels. In this paper, we propose ProMT, a novel memory controller design that ensures a persistently secure system with minimal overheads. ProMT protects the data confidentiality and ensures the data integrity with minimal overheads. ProMT reduces the performance overhead of secure memory implementation to 11.7%, extends the NVM's life time by 3.59x, and enables the system recovery in a fraction of a second.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Current computer systems are vulnerable to a wide range of attacks caused by the proliferation of accelerators, and the fact that current system comprise multiple SoCs provided from different vendors. Thus, major processor vendors are moving towards limiting the trust boundary to the processor chip only as in Intel's SGX, AMD's SME, and ARM's TrustZone. This secure boundary limitation requires protecting the memory content against data remanence attacks, which were performed against DRAM in the form of cold-boot attack and are more successful against NVM due to NVM's data persistency feature. However, implementing secure memory features, such as memory encryption and integrity verification has a non-trivial performance overhead, and can significantly reduce the emerging NVM's expected lifetime. Previous work looked at reducing the overheads of the secure memory implementation by packing more counters into a cache line, increasing the cacheability of security metadata, slightly reducing the size of the integrity tree, or using the ECC chip to store the MAC values. However, the root update process is barely studied, which requires a sequential update of the MAC values in all the integrity tree levels. In this paper, we propose ProMT, a novel memory controller design that ensures a persistently secure system with minimal overheads. ProMT protects the data confidentiality and ensures the data integrity with minimal overheads. ProMT reduces the performance overhead of secure memory implementation to 11.7%, extends the NVM's life time by 3.59x, and enables the system recovery in a fraction of a second.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating BWA-MEM Read Mapping on GPUs. Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs. Priority Algorithms with Advice for Disjoint Path Allocation Problems From Data of Internet of Things to Domain Knowledge: A Case Study of Exploration in Smart Agriculture On Two Variants of Induced Matchings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1