Truly Nonlinear Model-Order Reduction Techniques

S. Mijalkovic
{"title":"Truly Nonlinear Model-Order Reduction Techniques","authors":"S. Mijalkovic","doi":"10.1109/ESIME.2006.1644020","DOIUrl":null,"url":null,"abstract":"Model-order reduction (MOR) aims at automatic creation of compact and sufficiently accurate approximations of large-scale simulation models for efficient system design and optimization. While MOR is reaching the maturity in the area of linear system, nonlinear MOR applications are still quite sparse. Most of the existing nonlinear MOR approaches employ polynomial approximation of the nonlinear model operator that limits the applicability of the resulting reduced models. The objective of this paper is to introduce a class of truly nonlinear MOR techniques that do not alter the original nonlinear model formulation in the process of MOR subspace projection. The existing and new techniques for the accurate subspace creation and efficient nonlinear projection are discussed separately","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"204 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1644020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Model-order reduction (MOR) aims at automatic creation of compact and sufficiently accurate approximations of large-scale simulation models for efficient system design and optimization. While MOR is reaching the maturity in the area of linear system, nonlinear MOR applications are still quite sparse. Most of the existing nonlinear MOR approaches employ polynomial approximation of the nonlinear model operator that limits the applicability of the resulting reduced models. The objective of this paper is to introduce a class of truly nonlinear MOR techniques that do not alter the original nonlinear model formulation in the process of MOR subspace projection. The existing and new techniques for the accurate subspace creation and efficient nonlinear projection are discussed separately
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真正的非线性模型降阶技术
模型阶数约简(MOR)旨在自动创建紧凑且足够精确的大规模仿真模型近似,以实现有效的系统设计和优化。虽然MOR在线性系统领域已经趋于成熟,但非线性MOR的应用仍然相当稀少。现有的非线性MOR方法大多采用非线性模型算子的多项式逼近,这限制了所得到的约简模型的适用性。本文的目的是介绍一类真正的非线性MOR技术,它在MOR子空间投影过程中不改变原有的非线性模型公式。分别讨论了精确子空间生成和高效非线性投影的现有技术和新技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
145
期刊最新文献
Front Matter: Volume 12072 Front Matter: Volume 12073 Multi-Energy Domain Modeling of Microdevices: Virtual Prototyping by Predictive Simulation A Monte Carlo Investigation of Nanocrystal Memory Reliability Difficulties on the estimation of the thermal structure function from noisy thermal impedance transients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1