Efficient Removal of Cationic and Anionic Dyes from Wastewater Using Carbon Nanotubes from Petrochemical Waste Oil

Q3 Chemical Engineering Chemical engineering transactions Pub Date : 2021-06-15 DOI:10.3303/CET2186059
R. E. C. Amon, Chosel P. Lawagon
{"title":"Efficient Removal of Cationic and Anionic Dyes from Wastewater Using Carbon Nanotubes from Petrochemical Waste Oil","authors":"R. E. C. Amon, Chosel P. Lawagon","doi":"10.3303/CET2186059","DOIUrl":null,"url":null,"abstract":"Dye-contaminated wastewater from the textile industry and petrochemical waste oil (PWO) constitute a very serious threat to the environment. The presence of dyes in water inhibits penetration of sunlight, decreasing the photosynthetic processes of aquatic plants, resulting in the disruption of aquatic ecosystems. Moreover, organic dyes are known to have adverse effects on the human health, which presents a risk to the sources of clean drinking water. On the other hand, petrochemical waste oil is difficult to degrade and contains heavy metals and harmful additives. When dumped on landfills, waste oil may seep through the soil and find its way to bodies of water. Recycling technologies are still underdeveloped, and treatment proves to be expensive. Thus, it is crucial to improve the alternative upcycling technology of petrochemical waste oil. Herein, carbon nanotubes (CNT) were synthesized from PWO by simple catalytic vapor deposition (CVD). These CNTs were then used for systematic study on the removal of cationic and anionic dyes from wastewater. Dye removal by the as-synthesized CNT was Langmuir-type adsorption and followed the pseudo-second-order rate model for both the cationic and anionic dyes. Factors like solid-to-liquid ratio, initial dye concentration, and removal efficiency were investigated. CNT from PWO showed a relatively short adsorption time of less than an hour (t~60 min) for both types of dye and demonstrated very high dye adsorption capacities (qm). Hence, this study opens the possibility of using the PWO-derived CNT for large-scale dye-contaminated wastewater treatment.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"27 Suppl 1 1","pages":"349-354"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2186059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Dye-contaminated wastewater from the textile industry and petrochemical waste oil (PWO) constitute a very serious threat to the environment. The presence of dyes in water inhibits penetration of sunlight, decreasing the photosynthetic processes of aquatic plants, resulting in the disruption of aquatic ecosystems. Moreover, organic dyes are known to have adverse effects on the human health, which presents a risk to the sources of clean drinking water. On the other hand, petrochemical waste oil is difficult to degrade and contains heavy metals and harmful additives. When dumped on landfills, waste oil may seep through the soil and find its way to bodies of water. Recycling technologies are still underdeveloped, and treatment proves to be expensive. Thus, it is crucial to improve the alternative upcycling technology of petrochemical waste oil. Herein, carbon nanotubes (CNT) were synthesized from PWO by simple catalytic vapor deposition (CVD). These CNTs were then used for systematic study on the removal of cationic and anionic dyes from wastewater. Dye removal by the as-synthesized CNT was Langmuir-type adsorption and followed the pseudo-second-order rate model for both the cationic and anionic dyes. Factors like solid-to-liquid ratio, initial dye concentration, and removal efficiency were investigated. CNT from PWO showed a relatively short adsorption time of less than an hour (t~60 min) for both types of dye and demonstrated very high dye adsorption capacities (qm). Hence, this study opens the possibility of using the PWO-derived CNT for large-scale dye-contaminated wastewater treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用碳纳米管从石油化工废油中高效去除废水中的阳离子和阴离子染料
纺织工业的染料废水和石油化工废油对环境构成了严重的威胁。水中染料的存在抑制了阳光的穿透,减少了水生植物的光合作用过程,导致水生生态系统的破坏。此外,已知有机染料对人体健康有不利影响,这对清洁饮用水的来源构成了威胁。另一方面,石油化工废油难以降解,含有重金属和有害添加剂。当被倾倒在垃圾填埋场时,废油可能会渗入土壤并找到进入水体的途径。回收技术仍然不发达,而且处理费用昂贵。因此,改进石化废油的替代升级回收技术至关重要。本文采用简单的催化气相沉积(CVD)技术,以ppo为原料合成了碳纳米管(CNT)。然后将这些碳纳米管用于系统研究废水中阳离子和阴离子染料的去除。合成的碳纳米管对阳离子和阴离子染料的脱色均为langmuir型吸附,并符合准二级吸附速率模型。考察了固液比、初始染料浓度和去除率等因素。ppo碳纳米管对两种染料的吸附时间均小于1小时(t~60 min),具有非常高的染料吸附容量(qm)。因此,本研究开启了使用ppo衍生碳纳米管进行大规模染料污染废水处理的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
期刊最新文献
Incorporation of a Filter Media by Cellulose Fibers in Biosafety from Sugarcane Bagasse by Alkaline Hydrolysis Air Deterioration Gases in the Social Confinement Period by COVID-19 in Bogotá, Quito, Lima, Santiago de Chile and Buenos Aires Modelling of Methanol Synthesis The Potential of Liquefied Oxygen Storage for Flexible Oxygen-Pressure Swing Adsorption Unit Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1