Fast process variation analysis in nano-scaled technologies using column-wise sparse parameter selection

H. Ghasemzadeh, P. Gaillardon, Majid Yazdani, G. Micheli
{"title":"Fast process variation analysis in nano-scaled technologies using column-wise sparse parameter selection","authors":"H. Ghasemzadeh, P. Gaillardon, Majid Yazdani, G. Micheli","doi":"10.1145/2770287.2770327","DOIUrl":null,"url":null,"abstract":"With growing concern about process variation in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for design and verification. However, the high dimensionality of parameter space is a serious modeling challenge for emerging VLSI technologies, where the models are increasingly more complex. In this paper, we propose and validate a feature selection method to reduce the circuit modeling complexity associated with high parameter dimensionality. Despite the commonly used methods such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA), this method is capable of dealing with mixed Gaussian and non-Gaussian parameters, and performs a parameter selection in the input space rather than creating a new space. By considering non-linear dependencies among input parameters and outputs, the method results in an effective parameter selection. The application of this method is demonstrated in digital circuit timing analysis to effectively reduce the number of simulations. The experimental results on Double-Gate Silicon NanoWire FET (DG-SiNWFET) technology indicate 2.5x speed up in timing variation analysis of the I5CA589-s27 benchmark with a controlled average error bound of 9.4%.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"100 1","pages":"163-168"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2770287.2770327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With growing concern about process variation in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for design and verification. However, the high dimensionality of parameter space is a serious modeling challenge for emerging VLSI technologies, where the models are increasingly more complex. In this paper, we propose and validate a feature selection method to reduce the circuit modeling complexity associated with high parameter dimensionality. Despite the commonly used methods such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA), this method is capable of dealing with mixed Gaussian and non-Gaussian parameters, and performs a parameter selection in the input space rather than creating a new space. By considering non-linear dependencies among input parameters and outputs, the method results in an effective parameter selection. The application of this method is demonstrated in digital circuit timing analysis to effectively reduce the number of simulations. The experimental results on Double-Gate Silicon NanoWire FET (DG-SiNWFET) technology indicate 2.5x speed up in timing variation analysis of the I5CA589-s27 benchmark with a controlled average error bound of 9.4%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于柱形稀疏参数选择的纳米尺度工艺快速变化分析
随着人们对深度纳米技术中工艺变化的日益关注,参数化器件和电路建模对于设计和验证变得非常重要。然而,对于新兴的超大规模集成电路技术来说,参数空间的高维是一个严重的建模挑战,其中模型越来越复杂。本文提出并验证了一种特征选择方法,以降低高参数维数的电路建模复杂度。与常用的主成分分析(PCA)和独立成分分析(ICA)等方法相比,该方法能够处理混合高斯和非高斯参数,并且在输入空间中进行参数选择而不是创建新的空间。该方法通过考虑输入参数和输出参数之间的非线性依赖关系,实现了有效的参数选择。该方法在数字电路时序分析中的应用,有效地减少了仿真次数。在双栅硅纳米线FET (DG-SiNWFET)技术上的实验结果表明,I5CA589-s27基准的时序变化分析速度提高了2.5倍,控制平均误差范围为9.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MECRO: A local processing computer architecture based on memristor crossbar Mosaic: A scheme of mapping non-volatile Boolean logic on memristor crossbar Wave-based multi-valued computation framework A new Tunnel-FET based RAM concept for ultra-low power applications A CMOS-memristive self-learning neural network for pattern classification applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1