Nicolas Vitrant, S. Garcia, K. Müller, A. Ourjoumtsev
{"title":"High-Resolution Imaging of Cold Atoms through a Multimode Fiber","authors":"Nicolas Vitrant, S. Garcia, K. Müller, A. Ourjoumtsev","doi":"10.1103/PhysRevApplied.15.064047","DOIUrl":null,"url":null,"abstract":"We developed an ultra-compact high-resolution imaging system for cold atoms. Its only in-vacuum element is a multimode optical fiber with a diameter of $230\\,\\mu$m, which simultaneously collects light and guides it out of the vacuum chamber. External adaptive optics allow us to image cold Rb atoms with a $\\sim 1\\,\\mu$m resolution over a $100 \\times 100\\,\\mu$m$^2$ field of view. These optics can be easily rearranged to switch between fast absorption imaging and high-sensitivity fluorescence imaging. This system is particularly suited for hybrid quantum engineering platforms where cold atoms are combined with optical cavities, superconducting circuits or optomechanical devices restricting the optical access.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"367 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevApplied.15.064047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We developed an ultra-compact high-resolution imaging system for cold atoms. Its only in-vacuum element is a multimode optical fiber with a diameter of $230\,\mu$m, which simultaneously collects light and guides it out of the vacuum chamber. External adaptive optics allow us to image cold Rb atoms with a $\sim 1\,\mu$m resolution over a $100 \times 100\,\mu$m$^2$ field of view. These optics can be easily rearranged to switch between fast absorption imaging and high-sensitivity fluorescence imaging. This system is particularly suited for hybrid quantum engineering platforms where cold atoms are combined with optical cavities, superconducting circuits or optomechanical devices restricting the optical access.