{"title":"Strong and Bioactive Tri-Calcium Phosphate Scaffolds with Tube-Like Macropores","authors":"Wei Zheng, Gang Liu, Cheng Yan, Yin Xiao, X. Miao","doi":"10.4028/www.scientific.net/JBBTE.19.65","DOIUrl":null,"url":null,"abstract":"Calcium phosphate ceramic scaffolds have been widely investigated for bone tissue engineering due to their excellent biocompatibility and biodegradation. Unfortunately, they have low mechanical properties, which inversely restrict their wide applications in load-bearing bone tissue engineering. In this study, porous Si-doped tri-calcium phosphate (TCP) ceramics with a high porosity (~65%) and with interconnected macrotubes (~0.8mm in diameter) and micropores (5-100 μm) were prepared by firing hydroxyapatite (HA)/ bioactive glass-impregnated acrylontrile butadiene styrene (ABS) templates at 1400 °C. Results indicated that the cylindrical scaffolds had a higher compressive strength than the cubic scaffolds and the smallest cylindrical scaffold had a highest compressive strength (14.68+0.2MPa). Additional studies of cell attachment and MTT cytotoxicity assay proved the bioactivity and biocompatibility of the Si-doped TCP scaffolds.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"136 1","pages":"65 - 75"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.19.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Calcium phosphate ceramic scaffolds have been widely investigated for bone tissue engineering due to their excellent biocompatibility and biodegradation. Unfortunately, they have low mechanical properties, which inversely restrict their wide applications in load-bearing bone tissue engineering. In this study, porous Si-doped tri-calcium phosphate (TCP) ceramics with a high porosity (~65%) and with interconnected macrotubes (~0.8mm in diameter) and micropores (5-100 μm) were prepared by firing hydroxyapatite (HA)/ bioactive glass-impregnated acrylontrile butadiene styrene (ABS) templates at 1400 °C. Results indicated that the cylindrical scaffolds had a higher compressive strength than the cubic scaffolds and the smallest cylindrical scaffold had a highest compressive strength (14.68+0.2MPa). Additional studies of cell attachment and MTT cytotoxicity assay proved the bioactivity and biocompatibility of the Si-doped TCP scaffolds.