Temperature Profile and its Effect on Hardness Numbers of a Mild Steel Butt Weld

Q. Ma
{"title":"Temperature Profile and its Effect on Hardness Numbers of a Mild Steel Butt Weld","authors":"Q. Ma","doi":"10.1115/pvp2019-93247","DOIUrl":null,"url":null,"abstract":"\n Fusion welding of steel joints is common through history of industrial applications. Among those, Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are most common. Fusion welding process comprises of rapid heating and cooling cycles. Each cycle produces a non-uniform and transient temperature distribution and causes rapid thermal expansion followed by thermal contraction. Thus plastic deformation and thermal residual stresses can be induced in a welded joint when it cools down gradually to room temperature. In this study, temperature profiles of a hand-weld mild steel butt weld are analyzed by means of the finite element method (FEM) through ANSYS Mechanical APDL The moving heat source is simulated using the Gaussian distribution heat source model. A parametric study was then performed to evaluate the importance of certain key process parameters that affect the quality of a weldment. The effects of temperature profile on hardness numbers inside and away from the heat affected zone (HAZ) are discussed. It was found that the residual stress results obtained from the simulation agree with the distribution of hardness numbers tested on the weldment sample.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fusion welding of steel joints is common through history of industrial applications. Among those, Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are most common. Fusion welding process comprises of rapid heating and cooling cycles. Each cycle produces a non-uniform and transient temperature distribution and causes rapid thermal expansion followed by thermal contraction. Thus plastic deformation and thermal residual stresses can be induced in a welded joint when it cools down gradually to room temperature. In this study, temperature profiles of a hand-weld mild steel butt weld are analyzed by means of the finite element method (FEM) through ANSYS Mechanical APDL The moving heat source is simulated using the Gaussian distribution heat source model. A parametric study was then performed to evaluate the importance of certain key process parameters that affect the quality of a weldment. The effects of temperature profile on hardness numbers inside and away from the heat affected zone (HAZ) are discussed. It was found that the residual stress results obtained from the simulation agree with the distribution of hardness numbers tested on the weldment sample.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度分布及其对低碳钢对接焊缝硬度值的影响
通过工业应用的历史,钢接头的熔焊是常见的。其中,保护金属电弧焊(SMAW)和气体钨极电弧焊(GTAW)最为常见。熔焊过程包括快速的加热和冷却循环。每个循环产生不均匀的瞬态温度分布,并引起快速的热膨胀,然后是热收缩。因此,当焊接接头逐渐冷却到室温时,会引起塑性变形和热残余应力。利用ANSYS Mechanical APDL软件对某手工焊接低碳钢对接焊缝的温度分布进行了有限元分析,采用高斯分布热源模型对移动热源进行了模拟。然后进行了参数化研究,以评估影响焊件质量的某些关键工艺参数的重要性。讨论了温度分布对热影响区内外硬度值的影响。结果表明,模拟得到的残余应力与焊件硬度值的分布基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the Resistance of Austenitic Stainless Steel Welds to Hydrogen Embrittlement Improvement of Low-Temperature Toughness in Weld Metal Made of 9Cr-1Mo-V Steel by GTAW Method Load Normalization Method Accounting for Elastic and Elastic-Plastic Crack Growth Crack Growth Rate Testing and Large Plate Demonstration Under Chloride-Induced Stress Corrosion Cracking Conditions in Stainless Steel Canisters for Storage of Spent Nuclear Fuel An Efficient Modelling Approach for Predicting Residual Stress in Power-Beam Welds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1