Molecular Layer Doping: Non-destructive doping of silicon and germanium

B. Long, Giuseppe Alessio Verni, John O’Connell, J. Holmes, M. Shayesteh, D. O'Connell, R. Duffy
{"title":"Molecular Layer Doping: Non-destructive doping of silicon and germanium","authors":"B. Long, Giuseppe Alessio Verni, John O’Connell, J. Holmes, M. Shayesteh, D. O'Connell, R. Duffy","doi":"10.1109/IIT.2014.6939995","DOIUrl":null,"url":null,"abstract":"This work describes a non-destructive method to introduce impurity atoms into silicon (Si) and germanium (Ge) using Molecular Layer Doping (MLD). Molecules containing dopant atoms (arsenic) were designed, synthesized and chemically bound in self-limiting monolayers to the semiconductor surface. Subsequent annealing enabled diffusion of the dopant atom into the substrate. Material characterization included assessment of surface analysis (AFM) and impurity and carrier concentrations (ECV). Record carrier concentration levels of arsenic (As) in Si (~5×1020 atoms/cm3) by diffusion doping have been achieved, and to the best of our knowledge this work is the first demonstration of doping Ge by MLD. Furthermore due to the ever increasing surface to bulk ratio of future devices (FinFets, MugFETs, nanowire-FETS) surface packing spacing requirements of MLD dopant molecules is becoming more relaxed. It is estimated that a molecular spacing of 2 nm and 3 nm is required to achieve doping concentration of 1020 atoms/cm3 in a 5 nm wide fin and 5 nm diameter nanowire respectively. From a molecular perspective this is readily achievable.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"124 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6939995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This work describes a non-destructive method to introduce impurity atoms into silicon (Si) and germanium (Ge) using Molecular Layer Doping (MLD). Molecules containing dopant atoms (arsenic) were designed, synthesized and chemically bound in self-limiting monolayers to the semiconductor surface. Subsequent annealing enabled diffusion of the dopant atom into the substrate. Material characterization included assessment of surface analysis (AFM) and impurity and carrier concentrations (ECV). Record carrier concentration levels of arsenic (As) in Si (~5×1020 atoms/cm3) by diffusion doping have been achieved, and to the best of our knowledge this work is the first demonstration of doping Ge by MLD. Furthermore due to the ever increasing surface to bulk ratio of future devices (FinFets, MugFETs, nanowire-FETS) surface packing spacing requirements of MLD dopant molecules is becoming more relaxed. It is estimated that a molecular spacing of 2 nm and 3 nm is required to achieve doping concentration of 1020 atoms/cm3 in a 5 nm wide fin and 5 nm diameter nanowire respectively. From a molecular perspective this is readily achievable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子层掺杂:硅和锗的无损掺杂
本文描述了一种利用分子层掺杂(MLD)将杂质原子引入硅(Si)和锗(Ge)的非破坏性方法。设计、合成了含有掺杂原子(砷)的分子,并将其化学结合在半导体表面的自限制单层中。随后的退火使掺杂原子扩散到衬底中。材料表征包括评估表面分析(AFM)和杂质和载流子浓度(ECV)。通过扩散掺杂,砷(As)在Si中的载流子浓度达到了创纪录的水平(~5×1020原子/cm3),据我们所知,这项工作是第一次用MLD掺杂Ge。此外,由于未来器件(finfet, mugfet,纳米线- fet)的表面体积比不断增加,MLD掺杂分子的表面封装间距要求变得更加宽松。据估计,在5nm宽的鳍片和5nm直径的纳米线中,分别需要2nm和3nm的分子间距才能达到1020个原子/cm3的掺杂浓度。从分子的角度来看,这很容易实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increase of sp3 content in a-C films with gas cluster ion beam bombardments; XPS and NEXAFS study NMOS source-drain extension ion implantation into heated substrates Activation of low-dose Si+ implant into In0.53Ga0.47As with Al+ and P+ co-implants The features of cold boron implantation in silicon Plasma Doping optimizing knock-on effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1