Automatic Detection of Inactive Solar Cell Cracks in Electroluminescence Images

S. Spataru, P. Hacke, D. Sera
{"title":"Automatic Detection of Inactive Solar Cell Cracks in Electroluminescence Images","authors":"S. Spataru, P. Hacke, D. Sera","doi":"10.1109/PVSC.2017.8366106","DOIUrl":null,"url":null,"abstract":"Inactive solar cell regions resulted from their disconnection from the electrical circuit of the cell are considered to most severe type of solar cell cracks, causing the most power loss. In this work, we propose an algorithm for automatic determination of the electroluminescence (EL) signal threshold level corresponding these inactive solar cell regions. The resulting threshold enables automatic quantification of the cracked region size and estimation of the risk of power loss in the module. We tested the algorithm for detecting inactive cell areas in standard mono and mc-Si, showing the influence of current bias level and camera exposure time on the detection. Last, we examined the correlation between the size of the detected solar cell cracks and the power loss of the module.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"4 1","pages":"1421-1426"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2017.8366106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Inactive solar cell regions resulted from their disconnection from the electrical circuit of the cell are considered to most severe type of solar cell cracks, causing the most power loss. In this work, we propose an algorithm for automatic determination of the electroluminescence (EL) signal threshold level corresponding these inactive solar cell regions. The resulting threshold enables automatic quantification of the cracked region size and estimation of the risk of power loss in the module. We tested the algorithm for detecting inactive cell areas in standard mono and mc-Si, showing the influence of current bias level and camera exposure time on the detection. Last, we examined the correlation between the size of the detected solar cell cracks and the power loss of the module.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电致发光图像中非活性太阳能电池裂纹的自动检测
由于与电池电路断开而导致的非活性太阳能电池区域被认为是太阳能电池最严重的裂缝类型,造成最大的功率损失。在这项工作中,我们提出了一种自动确定这些非活性太阳能电池区域对应的电致发光(EL)信号阈值水平的算法。由此产生的阈值可以自动量化裂纹区域大小并估计模块中功率损耗的风险。我们测试了该算法在标准单色和mc-Si中检测非活性细胞区域,显示了电流偏置电平和相机曝光时间对检测的影响。最后,我们研究了检测到的太阳能电池裂纹的大小与组件的功率损耗之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Lightweight PV module design for Building Integrated Photovoltaics Advances in silicon surface texturization by metal assisted chemical etching for photovoltaic applications Inverse Metamorphic III-V/epi-SiGe Tandem Solar Cell Performance Assessed by Optical and Electrical Modeling Enabling High-Efficiency InAs/GaAs Quantum Dot Solar Cells by Epitaxial Lift-Off and Light Management An autocorrelation-based copula model for producing realistic clear-sky index and photovoltaic power generation time-series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1