{"title":"Complete multinuclear solid-state NMR of metal-organic frameworks: The case of α-Mg-formate","authors":"Bryan E. G. Lucier, Yue Zhang, Yining Huang","doi":"10.1002/cmr.a.21410","DOIUrl":null,"url":null,"abstract":"<p>Metal-organic frameworks (MOFs) are exciting porous materials with a growing number of applications ranging from catalysis to gas storage. Establishing logical connections between the local MOF structure and its properties is not often straightforward, however, solid-state NMR is a sensitive probe of local structure and can be used to shed light on processes such as guest adsorption and gas motion within MOFs. As illustrated using our recent works on the microporous α-Mg-formate (Mg<sub>3</sub>(HCOO)<sub>6</sub>) MOF, complete multinuclear solid-state NMR characterization of MOFs is now possible, and can provide unique insight that is not readily available through other methods. A wide variety of solid-state NMR techniques have been employed, including direct-excitation, cross-polarization, fast magic-angle spinning, and two-dimensional experiments. New variable-temperature <sup>2</sup>H solid-state NMR data of deuterated hydrogen gas within α-Mg-formate and the resulting detailed dynamic information is also presented, analyzed, and discussed.</p>","PeriodicalId":55216,"journal":{"name":"Concepts in Magnetic Resonance Part A","volume":"45A 6","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.a.21410","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part A","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.a.21410","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 10
Abstract
Metal-organic frameworks (MOFs) are exciting porous materials with a growing number of applications ranging from catalysis to gas storage. Establishing logical connections between the local MOF structure and its properties is not often straightforward, however, solid-state NMR is a sensitive probe of local structure and can be used to shed light on processes such as guest adsorption and gas motion within MOFs. As illustrated using our recent works on the microporous α-Mg-formate (Mg3(HCOO)6) MOF, complete multinuclear solid-state NMR characterization of MOFs is now possible, and can provide unique insight that is not readily available through other methods. A wide variety of solid-state NMR techniques have been employed, including direct-excitation, cross-polarization, fast magic-angle spinning, and two-dimensional experiments. New variable-temperature 2H solid-state NMR data of deuterated hydrogen gas within α-Mg-formate and the resulting detailed dynamic information is also presented, analyzed, and discussed.
期刊介绍:
Concepts in Magnetic Resonance Part A brings together clinicians, chemists, and physicists involved in the application of magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from academic, governmental, and clinical communities, to disseminate the latest important experimental results from medical, non-medical, and analytical magnetic resonance methods, as well as related computational and theoretical advances.
Subject areas include (but are by no means limited to):
-Fundamental advances in the understanding of magnetic resonance
-Experimental results from magnetic resonance imaging (including MRI and its specialized applications)
-Experimental results from magnetic resonance spectroscopy (including NMR, EPR, and their specialized applications)
-Computational and theoretical support and prediction for experimental results
-Focused reviews providing commentary and discussion on recent results and developments in topical areas of investigation
-Reviews of magnetic resonance approaches with a tutorial or educational approach