Voss Surfaces: A Design Space for Geodesic Gridshells

N. Montagné, C. Douthe, X. Tellier, C. Fivet, O. Baverel
{"title":"Voss Surfaces: A Design Space for Geodesic Gridshells","authors":"N. Montagné, C. Douthe, X. Tellier, C. Fivet, O. Baverel","doi":"10.20898/J.IASS.2020.008","DOIUrl":null,"url":null,"abstract":"The design of envelopes with complex geometries often leads to construction challenges. To overcome these difficulties, resorting to discrete differential geometry proved successful by establishing close links between mesh properties and the existence of good fabrication, assembling\n and mechanical properties. In this paper, the design of a special family of structures, called geodesic shells, is addressed using Voss nets, a family of discrete surfaces. The use of discrete Voss surfaces ensures that the structure can be built from simply connected, initially straight laths,\n and covered with flat panels. These advantageous constructive properties arise from the existence of a conjugate network of geodesic curves on the underlying smooth surface. Here, a review of Voss nets is presented and particular attention is given to the projection of normal vectors on the\n unit sphere. This projection, called Gauss map, creates a dual net which unveils the remarkable characteristics of Voss nets. Then, based on the previous study, two generation methods are introduced. One enables the exploration and the deformation of Voss nets while the second provides a more\n direct computational technique. The application of theses methodologies is discussed alongside formal examples.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/J.IASS.2020.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 6

Abstract

The design of envelopes with complex geometries often leads to construction challenges. To overcome these difficulties, resorting to discrete differential geometry proved successful by establishing close links between mesh properties and the existence of good fabrication, assembling and mechanical properties. In this paper, the design of a special family of structures, called geodesic shells, is addressed using Voss nets, a family of discrete surfaces. The use of discrete Voss surfaces ensures that the structure can be built from simply connected, initially straight laths, and covered with flat panels. These advantageous constructive properties arise from the existence of a conjugate network of geodesic curves on the underlying smooth surface. Here, a review of Voss nets is presented and particular attention is given to the projection of normal vectors on the unit sphere. This projection, called Gauss map, creates a dual net which unveils the remarkable characteristics of Voss nets. Then, based on the previous study, two generation methods are introduced. One enables the exploration and the deformation of Voss nets while the second provides a more direct computational technique. The application of theses methodologies is discussed alongside formal examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voss曲面:测地线网格壳的设计空间
具有复杂几何形状的围护结构的设计通常会带来施工挑战。为了克服这些困难,离散微分几何被证明是成功的,它建立了网格特性与良好的制造、装配和机械特性之间的密切联系。在本文中,设计一种特殊的结构族,称为测地线壳,是解决使用沃斯网,一个离散的表面族。离散的Voss表面的使用确保了结构可以由简单连接的,最初的直板条建造,并覆盖有平板。这些有利的构造性质是由于在光滑表面上存在测地线曲线的共轭网络。在这里,对Voss网进行了回顾,并特别关注了法向量在单位球上的投影。这个投影被称为高斯图,它创造了一个双重网络,揭示了沃斯网络的显著特征。然后,在前人研究的基础上,介绍了两种生成方法。其中一种能够探测和变形沃斯网,而另一种则提供了一种更直接的计算技术。这些方法的应用与正式的例子一起讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
17
期刊介绍: The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.
期刊最新文献
Membrane Solution for a Paraboloid under Self-Weight An Initial-Morphogenesis Technique of Free-Form Shell Roofing Based on a Fourier Transform Seismic Design of Sports Arena for Tokyo Olympic 2020 Using Energy-Dissipation Devices Progressive Collapse Analysis of Single-Layer Latticed Domes With Fabricated Joints The Gridshells for the San Francisco Salesforce Transit Center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1