Fixing rules for data cleaning based on conditional functional dependency

Rashed Salem, Asmaa Abdo
{"title":"Fixing rules for data cleaning based on conditional functional dependency","authors":"Rashed Salem,&nbsp;Asmaa Abdo","doi":"10.1016/j.fcij.2017.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Most existing databases suffer from data inconsistencies. Enhancing data quality efforts are necessary to resolve this issue. In this paper, two techniques are proposed for mining accurate conditional functional dependencies rules from such databases to be employed for data cleaning. The idea of the proposed techniques is to mine firstly maximal closed frequent patterns, then mine the dependable conditional functional dependencies rules with the help of lift measure. Moreover, data repairing algorithm is proposed for fixing inconsistent tuples found in the database exploiting the generated rules. An extensive experimental is conducted study to confirm the effectiveness of the proposed techniques compared with existing technique on both real-life and synthetic medical data sets.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"1 1","pages":"Pages 10-26"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2017.03.002","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728817300041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Most existing databases suffer from data inconsistencies. Enhancing data quality efforts are necessary to resolve this issue. In this paper, two techniques are proposed for mining accurate conditional functional dependencies rules from such databases to be employed for data cleaning. The idea of the proposed techniques is to mine firstly maximal closed frequent patterns, then mine the dependable conditional functional dependencies rules with the help of lift measure. Moreover, data repairing algorithm is proposed for fixing inconsistent tuples found in the database exploiting the generated rules. An extensive experimental is conducted study to confirm the effectiveness of the proposed techniques compared with existing technique on both real-life and synthetic medical data sets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正基于条件函数依赖的数据清理规则
大多数现有数据库都存在数据不一致的问题。要解决这个问题,必须加强数据质量工作。本文提出了两种技术,用于从这些数据库中挖掘精确的条件函数依赖规则,用于数据清理。该技术的思想是首先挖掘最大封闭频繁模式,然后借助提升测度挖掘可靠的条件函数依赖规则。此外,提出了数据修复算法,利用生成的规则修复数据库中发现的不一致元组。进行了广泛的实验研究,以确认所提出的技术与现有技术在现实生活和合成医疗数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1