A fully flexible circuit implementation of clique-based neural networks in 65-nm CMOS

Benoît Larras, Paul Chollet, C. Lahuec, F. Seguin, M. Arzel
{"title":"A fully flexible circuit implementation of clique-based neural networks in 65-nm CMOS","authors":"Benoît Larras, Paul Chollet, C. Lahuec, F. Seguin, M. Arzel","doi":"10.1109/ISCAS.2018.8350954","DOIUrl":null,"url":null,"abstract":"Clique-based neural networks implement low-complexity functions working with a reduced connectivity between neurons. Thus, they address very specific applications operating with a very low energy budget. This paper proposes a flexible and iterative neural architecture able to implement multiple types of clique-based neural networks of up to 3968 neurons. The circuit has been integrated in a ST 65-nm CMOS ASIC and validated in the context of ECG classification. The network core reacts in 83ns to a stimulation and occupies a 0.21mm2 silicon area.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"58 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8350954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Clique-based neural networks implement low-complexity functions working with a reduced connectivity between neurons. Thus, they address very specific applications operating with a very low energy budget. This paper proposes a flexible and iterative neural architecture able to implement multiple types of clique-based neural networks of up to 3968 neurons. The circuit has been integrated in a ST 65-nm CMOS ASIC and validated in the context of ECG classification. The network core reacts in 83ns to a stimulation and occupies a 0.21mm2 silicon area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于团的神经网络在65纳米CMOS上的全柔性电路实现
基于派系的神经网络实现了低复杂度的功能,神经元之间的连接减少了。因此,它们可以在非常低的能源预算下解决非常具体的应用。本文提出了一种灵活的迭代神经结构,能够实现多达3968个神经元的多种类型的基于团的神经网络。该电路已集成在ST 65纳米CMOS ASIC中,并在心电分类的背景下进行了验证。网络核心在83ns内对刺激作出反应,并占据0.21mm2的硅面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1