Clustering Data Pasien Covid Berdasarkan Usia dan Gejala Menggunakan Algoritma K-Means

N. Nurhidayati, Lola Mauliya, Suhartini Suhartini
{"title":"Clustering Data Pasien Covid Berdasarkan Usia dan Gejala Menggunakan Algoritma K-Means","authors":"N. Nurhidayati, Lola Mauliya, Suhartini Suhartini","doi":"10.29408/jit.v6i2.17488","DOIUrl":null,"url":null,"abstract":"The case of COVID-19 is familiar to everyone's ears, but there are still a lot of people who don't care about the importance of maintaining health protocols because of the lack of education about the COVID-19 virus. The increase in cases of covid-19 is getting higher from year to year with increasingly diverse patient symptoms, therefore researchers are interested in conducting research on grouping covid patients based on age and symptoms using the k-means algorithm clustering method. Rapidminer 5 is an application used to process patient data. covid-19, but before processing the data, several processes and stages will be carried out including data cleaning, data selection, integration, transformation until the data is ready to be processed using the rapidmider application. From the result obtained cluster 1 wich amounted to 866 items it was certain that it consisted of patients aged 42-81 years with 50 deaths, while in the cluster 2 wich amounted to 1566 items with an age range of 1-41 years with 16 death. The k-means algorithm clustering method is the most appropriate solution for processing covid patient data. -19, this is because the level of accuracy produced is quite effective. The results obtained in grouping Covid-19 patient data using the k-means algorithm can be used as evaluation material by the government, especially the East Lombok District Health Office in dealing with cases of the increasingly high spread of COVID-19.","PeriodicalId":13567,"journal":{"name":"Infotek : Jurnal Informatika dan Teknologi","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotek : Jurnal Informatika dan Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/jit.v6i2.17488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The case of COVID-19 is familiar to everyone's ears, but there are still a lot of people who don't care about the importance of maintaining health protocols because of the lack of education about the COVID-19 virus. The increase in cases of covid-19 is getting higher from year to year with increasingly diverse patient symptoms, therefore researchers are interested in conducting research on grouping covid patients based on age and symptoms using the k-means algorithm clustering method. Rapidminer 5 is an application used to process patient data. covid-19, but before processing the data, several processes and stages will be carried out including data cleaning, data selection, integration, transformation until the data is ready to be processed using the rapidmider application. From the result obtained cluster 1 wich amounted to 866 items it was certain that it consisted of patients aged 42-81 years with 50 deaths, while in the cluster 2 wich amounted to 1566 items with an age range of 1-41 years with 16 death. The k-means algorithm clustering method is the most appropriate solution for processing covid patient data. -19, this is because the level of accuracy produced is quite effective. The results obtained in grouping Covid-19 patient data using the k-means algorithm can be used as evaluation material by the government, especially the East Lombok District Health Office in dealing with cases of the increasingly high spread of COVID-19.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据年龄和症状对Covid患者的数据进行分类
COVID-19的情况对每个人来说都很熟悉,但由于缺乏对COVID-19病毒的教育,仍然有很多人不关心维持健康协议的重要性。随着新冠肺炎病例的逐年增加,患者的症状也越来越多样化,因此研究人员有兴趣利用k-means算法聚类方法根据年龄和症状对新冠肺炎患者进行分组。Rapidminer 5是一个用于处理患者数据的应用程序。但在处理数据之前,将进行几个过程和阶段,包括数据清理、数据选择、集成、转换,直到数据准备好使用快速应用程序进行处理。聚类1共有866项,年龄为42 ~ 81岁,死亡50例;聚类2共有1566项,年龄为1 ~ 41岁,死亡16例。k-means算法聚类方法是处理covid患者数据最合适的解决方案。19、这是因为产生的精度水平相当有效。使用k-means算法对Covid-19患者数据分组获得的结果可作为政府,特别是东龙目岛卫生局处理Covid-19日益高传播病例的评估材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Sistem Informasi Geografis Dalam Pemetaan Toko Oleh - Oleh Khas Lombok Penerapan Model Decision Tree Menggunakan Python Untuk Prediksi Faktor Dominan Penyebab Penyakit Stroke Penerapan Metode Waterfall dalam Pengembangan Aplikasi Schedule Maintenance Alat Produksi Perancangan Sistem Informasi Absensi Menggunakan Metode QR Code Berbasis Android Aplikasi IT Support Work Orders Berbasis Web Dalam Rangka Menuju Sidoarjo Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1