An Improved Kalman Filter Based on Self-adaptive Adjustment Parameters

Shenglun Yi, X. Ren, Tingli Su
{"title":"An Improved Kalman Filter Based on Self-adaptive Adjustment Parameters","authors":"Shenglun Yi, X. Ren, Tingli Su","doi":"10.1109/DDCLS.2019.8909000","DOIUrl":null,"url":null,"abstract":"This paper considers an improved Kalman filter (KF) for a non-Gaussian system, when an adaptive statistics model is applied to capture the systematic characteristics in real time. The problem is formulated as self-adaptive adjustment parameters (SAPs) updating by the recursive least squares (RLS) algorithm. These parameters are shown to admit adaptive statistics model to characteristics of which applies and extends results given earlier in “Online denoising based on the second-order adaptive statistics model” (S. L. Yi and X. B. Jin et al., Sensors, 17(7), 1668, 2017.). Simulations comparing the improved KF based on the SAPs to the standard KF and the past algorithm illustrate a satisfactory performance when applied to self-adaptive adjustment parameters. Simulation results show that the proposed algorithm can gradually converge with a small performance loss.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"8 1","pages":"1060-1064"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8909000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers an improved Kalman filter (KF) for a non-Gaussian system, when an adaptive statistics model is applied to capture the systematic characteristics in real time. The problem is formulated as self-adaptive adjustment parameters (SAPs) updating by the recursive least squares (RLS) algorithm. These parameters are shown to admit adaptive statistics model to characteristics of which applies and extends results given earlier in “Online denoising based on the second-order adaptive statistics model” (S. L. Yi and X. B. Jin et al., Sensors, 17(7), 1668, 2017.). Simulations comparing the improved KF based on the SAPs to the standard KF and the past algorithm illustrate a satisfactory performance when applied to self-adaptive adjustment parameters. Simulation results show that the proposed algorithm can gradually converge with a small performance loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应参数调整的改进卡尔曼滤波
本文研究了一种用于非高斯系统的改进卡尔曼滤波器(KF),该滤波器采用自适应统计模型来实时捕捉系统特征。将该问题表述为用递归最小二乘(RLS)算法更新自适应调整参数。这些参数表明,自适应统计模型的特征适用并扩展了前面“基于二阶自适应统计模型的在线去噪”中给出的结果(S. L. Yi和X. B. Jin等人,传感器,17(7),1668,2017)。将基于SAPs的改进KF算法与标准KF算法和过去的算法进行了仿真比较,结果表明,在自适应调整参数时,改进的KF算法具有令人满意的性能。仿真结果表明,该算法能以较小的性能损失逐步收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Incremental Conductance Method Based on Fuzzy Control Simulation of the Array Signals Processing Based on Automatic Gain Control for Two-Wave Mixing Interferometer An Intelligent Supervision System of Environmental Pollution in Industrial Park Iterative learning control with optimal learning gain for recharging of Lithium-ion battery Integrated Position and Speed Control for PMSM Servo System Based on Extended State Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1