Tryptophan Residues from Cap Binding Slot in eIF4E Family Members: Their Contributions to Near-UV Circular Dichroism Spectra

J. Zuberek, A. Stelmachowska
{"title":"Tryptophan Residues from Cap Binding Slot in eIF4E Family Members: Their Contributions to Near-UV Circular Dichroism Spectra","authors":"J. Zuberek, A. Stelmachowska","doi":"10.4172/2161-0398.1000250","DOIUrl":null,"url":null,"abstract":"eIF4E, a key factor in the cap-dependent translation initiation, binds cap structure at the 5’ end of mRNA by stacking interaction involving two of its eight conserved tryptophan residues. In this paper, we examined individual contributions of tryptophan residues to the near-UV Circular Dichroism spectra to identify structural similarities and differences in cap binding motif among members of eIF4E family. The near-UV CD spectrum of human eIF4E1a in its apo form, resulting mainly from 1Lb transition and dominated by two vibrionic bands, is conserved among eIF4Es. Based on comparison of CD spectra for eIF4E mutants, we showed that tryptophans involved in stacking interaction give strongest individual contributions, which allow identification of their different orientation with respect to the cap. This indicates that near-UV CD is a quick and powerful tool to analyse tryptophan conformation in eIF4E proteins, and their changes upon binding modified cap analogues.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":"56 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

eIF4E, a key factor in the cap-dependent translation initiation, binds cap structure at the 5’ end of mRNA by stacking interaction involving two of its eight conserved tryptophan residues. In this paper, we examined individual contributions of tryptophan residues to the near-UV Circular Dichroism spectra to identify structural similarities and differences in cap binding motif among members of eIF4E family. The near-UV CD spectrum of human eIF4E1a in its apo form, resulting mainly from 1Lb transition and dominated by two vibrionic bands, is conserved among eIF4Es. Based on comparison of CD spectra for eIF4E mutants, we showed that tryptophans involved in stacking interaction give strongest individual contributions, which allow identification of their different orientation with respect to the cap. This indicates that near-UV CD is a quick and powerful tool to analyse tryptophan conformation in eIF4E proteins, and their changes upon binding modified cap analogues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
eIF4E家族成员帽结合槽色氨酸残基对近紫外圆二色光谱的贡献
eIF4E是帽依赖翻译起始的关键因子,通过涉及其8个保守色氨酸残基中的两个的堆叠相互作用,在mRNA的5 '端结合帽结构。在本文中,我们研究了色氨酸残基对近紫外圆二色光谱的个别贡献,以确定eIF4E家族成员之间帽结合基序的结构相似性和差异性。人eIF4E1a载子型的近紫外CD谱在eIF4Es中是保守的,主要由1Lb跃迁引起,并以两条振子带为主。基于对eIF4E突变体CD光谱的比较,我们发现参与堆叠相互作用的色氨酸提供了最强的个体贡献,这使得它们相对于帽的不同取向得以识别。这表明近紫外CD是一种快速而强大的工具,可以分析eIF4E蛋白中色氨酸的构象,以及它们在结合修饰帽类似物时的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antioxidant and its Adverse Effects Biomaterials in the Field of Dental Implantation Radioactivity: Radon Gas, its Properties and the Risks of Increasing its Concentration Using Demarcation Criteria as a Tool for Evaluating Controversial Case of andldquo;Water Memoryandrdquo; The Practice of Preoperative Antibiotic Prophylaxis and the Adherence to ASHP Guideline in Different Hospitals in Riyadh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1