Logistic or not Logistic?

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Neerlandica Pub Date : 2021-08-16 DOI:10.1111/stan.12292
J. Allison, B. Ebner, M. Smuts
{"title":"Logistic or not Logistic?","authors":"J. Allison, B. Ebner, M. Smuts","doi":"10.1111/stan.12292","DOIUrl":null,"url":null,"abstract":"We propose a new class of goodness‐of‐fit tests for the logistic distribution based on a characterization related to the density approach in the context of Stein's method. This characterization‐based test is a first of its kind for the logistic distribution. The asymptotic null distribution of the test statistic is derived and it is shown that the test is consistent against fixed alternatives. The finite sample power performance of the newly proposed class of tests is compared to various existing tests by means of a Monte Carlo study. It is found that this new class of tests are especially powerful when the alternative distributions are heavy tailed, like Student's t and Cauchy, or for skew alternatives such as the log‐normal, gamma and chi‐square distributions.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"74 1","pages":"429 - 443"},"PeriodicalIF":1.4000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12292","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new class of goodness‐of‐fit tests for the logistic distribution based on a characterization related to the density approach in the context of Stein's method. This characterization‐based test is a first of its kind for the logistic distribution. The asymptotic null distribution of the test statistic is derived and it is shown that the test is consistent against fixed alternatives. The finite sample power performance of the newly proposed class of tests is compared to various existing tests by means of a Monte Carlo study. It is found that this new class of tests are especially powerful when the alternative distributions are heavy tailed, like Student's t and Cauchy, or for skew alternatives such as the log‐normal, gamma and chi‐square distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物流还是不物流?
我们提出了一类新的逻辑分布的拟合优度检验,该检验基于与Stein方法背景下的密度方法相关的表征。这种基于特征的测试是对物流分布的首次测试。导出了检验统计量的渐近零分布,并证明了在固定的备选项下检验是一致的。通过蒙特卡罗方法,将新提出的一类测试的有限样本功率性能与现有的各种测试进行了比较。我们发现,当备选分布是重尾分布时,如Student's t和Cauchy分布,或者对于偏态分布,如对数正态分布、伽玛分布和卡方分布,这类新的检验特别强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
期刊最新文献
On global robustness of an adversarial risk analysis solution Heterogeneous dense subhypergraph detection General adapted‐threshold monitoring in discrete environments and rules for imbalanced classes VC‐PCR: A prediction method based on variable selection and clustering Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1