Discovering playing patterns: Time series clustering of free-to-play game data

A. Saas, Anna Guitart, Á. Periáñez
{"title":"Discovering playing patterns: Time series clustering of free-to-play game data","authors":"A. Saas, Anna Guitart, Á. Periáñez","doi":"10.1109/CIG.2016.7860442","DOIUrl":null,"url":null,"abstract":"The classification of time series data is a challenge common to all data-driven fields. However, there is no agreement about which are the most efficient techniques to group unlabeled time-ordered data. This is because a successful classification of time series patterns depends on the goal and the domain of interest, i.e. it is application-dependent. In this article, we study free-to-play game data. In this domain, clustering similar time series information is increasingly important due to the large amount of data collected by current mobile and web applications. We evaluate which methods cluster accurately time series of mobile games, focusing on player behavior data. We identify and validate several aspects of the clustering: the similarity measures and the representation techniques to reduce the high dimensionality of time series. As a robustness test, we compare various temporal datasets of player activity from two free-to-play video-games. With these techniques we extract temporal patterns of player behavior relevant for the evaluation of game events and game-business diagnosis. Our experiments provide intuitive visualizations to validate the results of the clustering and to determine the optimal number of clusters. Additionally, we assess the common characteristics of the players belonging to the same group. This study allows us to improve the understanding of player dynamics and churn behavior.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"109 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

The classification of time series data is a challenge common to all data-driven fields. However, there is no agreement about which are the most efficient techniques to group unlabeled time-ordered data. This is because a successful classification of time series patterns depends on the goal and the domain of interest, i.e. it is application-dependent. In this article, we study free-to-play game data. In this domain, clustering similar time series information is increasingly important due to the large amount of data collected by current mobile and web applications. We evaluate which methods cluster accurately time series of mobile games, focusing on player behavior data. We identify and validate several aspects of the clustering: the similarity measures and the representation techniques to reduce the high dimensionality of time series. As a robustness test, we compare various temporal datasets of player activity from two free-to-play video-games. With these techniques we extract temporal patterns of player behavior relevant for the evaluation of game events and game-business diagnosis. Our experiments provide intuitive visualizations to validate the results of the clustering and to determine the optimal number of clusters. Additionally, we assess the common characteristics of the players belonging to the same group. This study allows us to improve the understanding of player dynamics and churn behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现游戏模式:免费游戏数据的时间序列聚类
时间序列数据的分类是所有数据驱动领域面临的共同挑战。然而,对于对未标记的时间顺序数据进行分组的最有效技术,没有达成一致意见。这是因为时间序列模式的成功分类取决于目标和感兴趣的领域,即依赖于应用程序。在本文中,我们将研究免费游戏数据。在该领域中,由于当前移动和web应用程序收集了大量数据,因此聚类相似时间序列信息变得越来越重要。我们评估哪种方法能够准确地聚类手机游戏的时间序列,关注玩家行为数据。我们识别并验证了聚类的几个方面:相似性度量和表示技术,以降低时间序列的高维数。作为稳健性测试,我们比较了两款免费电子游戏的玩家活动的各种时间数据集。通过这些技术,我们提取了与游戏事件评估和游戏商业诊断相关的玩家行为的时间模式。我们的实验提供直观的可视化来验证聚类的结果,并确定最佳的聚类数量。此外,我们评估属于同一组的球员的共同特征。这项研究让我们能够更好地理解玩家动态和流失行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1