Full-text search on multi-byte encoded documents

R. Wong, Fengming Shi, N. Lam
{"title":"Full-text search on multi-byte encoded documents","authors":"R. Wong, Fengming Shi, N. Lam","doi":"10.1145/2361354.2361404","DOIUrl":null,"url":null,"abstract":"The Burrows Wheeler transform (BWT) has become popular in text compression, full-text search, XML representation, and DNA sequence matching. It is very efficient to perform a full-text search on BWT encoded text using backward search. This paper aims to study different approaches for applying BWT on multi-byte encoded (e.g. UTF-16) text documents. While previous work has studied BWT on word-based models, and BWT can be applied directly on multi-byte encodings (by treating the document as single-byte coded), there has been no extensive study on how to utilize BWT on multi-byte encoded documents for efficient full-text search. Therefore, in this paper, we propose several ways to efficiently backward search multi-byte text documents. We demonstrate our findings using Chinese text documents. Our experiment results show that our extensions to the standard BWT method offer faster search performance and use less runtime memory.","PeriodicalId":91385,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","volume":"13 1","pages":"227-236"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2361354.2361404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Burrows Wheeler transform (BWT) has become popular in text compression, full-text search, XML representation, and DNA sequence matching. It is very efficient to perform a full-text search on BWT encoded text using backward search. This paper aims to study different approaches for applying BWT on multi-byte encoded (e.g. UTF-16) text documents. While previous work has studied BWT on word-based models, and BWT can be applied directly on multi-byte encodings (by treating the document as single-byte coded), there has been no extensive study on how to utilize BWT on multi-byte encoded documents for efficient full-text search. Therefore, in this paper, we propose several ways to efficiently backward search multi-byte text documents. We demonstrate our findings using Chinese text documents. Our experiment results show that our extensions to the standard BWT method offer faster search performance and use less runtime memory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多字节编码文档的全文搜索
Burrows Wheeler变换(BWT)在文本压缩、全文搜索、XML表示和DNA序列匹配方面已经非常流行。使用反向搜索对BWT编码的文本进行全文搜索是非常有效的。本文旨在研究将BWT应用于多字节编码(如UTF-16)文本文档的不同方法。虽然以前的工作已经研究了基于词的模型上的BWT,并且BWT可以直接应用于多字节编码(通过将文档视为单字节编码),但如何在多字节编码的文档上利用BWT进行高效的全文搜索还没有广泛的研究。因此,在本文中,我们提出了几种有效的向后搜索多字节文本文档的方法。我们使用中文文本文档来证明我们的发现。实验结果表明,我们对标准BWT方法的扩展提供了更快的搜索性能和更少的运行时内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Notarial Archives, Valletta: Starting from Zero Truncation: all the news that fits we'll print Classifying and ranking search engine results as potential sources of plagiarism An ensemble approach for text document clustering using Wikipedia concepts Document changes: modeling, detection, storage and visualization (DChanges 2014)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1