Effects of Motion Vision and Neural Efficiency On Target Capture in Basketball Players

Xianghui Li
{"title":"Effects of Motion Vision and Neural Efficiency On Target Capture in Basketball Players","authors":"Xianghui Li","doi":"10.1115/1.4056607","DOIUrl":null,"url":null,"abstract":"\n Basketball players' visual and neurological characteristics may affect their sports performance. In this paper, 20 basketball players and 20 non-athletes received a motion vision test and a neurological efficiency test. The experimental stimulus was to determine whether there was a ball on the picture. The relevant visual data were obtained by an eye tracker. The brain area activity data were obtained by functional magnetic resonance imaging (fMRI). The data were processed and analyzed. The results showed that the reaction time of group A (basketball players) was 526.78 ± 75.36 ms, and the correct rate was 94.12 ± 3.45%, both of which were better than group B (non-athletes). The fixation duration and fixation frequency of group A were 204.77 ± 40.23 ms and 1.67 ± 0.41 times, suggesting good fixation stability, and group A activated fewer brain areas than group B. The experimental results verify that basketball players have better target capture ability and higher neural efficiency while consuming fewer neural resources.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"495 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Basketball players' visual and neurological characteristics may affect their sports performance. In this paper, 20 basketball players and 20 non-athletes received a motion vision test and a neurological efficiency test. The experimental stimulus was to determine whether there was a ball on the picture. The relevant visual data were obtained by an eye tracker. The brain area activity data were obtained by functional magnetic resonance imaging (fMRI). The data were processed and analyzed. The results showed that the reaction time of group A (basketball players) was 526.78 ± 75.36 ms, and the correct rate was 94.12 ± 3.45%, both of which were better than group B (non-athletes). The fixation duration and fixation frequency of group A were 204.77 ± 40.23 ms and 1.67 ± 0.41 times, suggesting good fixation stability, and group A activated fewer brain areas than group B. The experimental results verify that basketball players have better target capture ability and higher neural efficiency while consuming fewer neural resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动视觉和神经效率对篮球运动员目标捕捉的影响
篮球运动员的视觉和神经特征可能会影响他们的运动表现。本文对20名篮球运动员和20名非运动员进行了运动视觉测试和神经效率测试。实验刺激是为了确定图片上是否有一个球。相关视觉数据由眼动仪获取。脑区活动数据通过功能磁共振成像(fMRI)获得。对数据进行了处理和分析。结果表明,A组(篮球运动员)的反应时间为526.78±75.36 ms,正确率为94.12±3.45%,均优于B组(非运动员)。A组的注视时间和注视频率分别为204.77±40.23 ms和1.67±0.41次,表明A组的注视稳定性较好,且A组激活的脑区比b组少。实验结果验证了篮球运动员在消耗较少的神经资源的情况下具有更好的目标捕捉能力和更高的神经效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Speed Three-Dimensional-Digital Image Correlation and Schlieren Imaging Integrated With Shock Tube Loading for Investigating Dynamic Response of Human Tympanic Membrane Exposed to Blasts. Quantifying the Fascicular Changes in Recovered Achilles Tendon Patients Using Diffusion Magnetic Resonance Imaging and Tractography. Assistive Technology for Real-Time Fall Prevention during Walking: Evaluation of the Effect of an Intelligent Foot Orthosis A Simple Poc Device for Temperature Control of Multiple Reactions During Recombinase Polymerase Amplification Auxetic Structure Inspired Microneedle Arrays for Minimally Invasive Drug Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1