Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, Marc Najork
{"title":"Addressing Trust Bias for Unbiased Learning-to-Rank","authors":"Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, Marc Najork","doi":"10.1145/3308558.3313697","DOIUrl":null,"url":null,"abstract":"Existing unbiased learning-to-rank models use counterfactual inference, notably Inverse Propensity Scoring (IPS), to learn a ranking function from biased click data. They handle the click incompleteness bias, but usually assume that the clicks are noise-free, i.e., a clicked document is always assumed to be relevant. In this paper, we relax this unrealistic assumption and study click noise explicitly in the unbiased learning-to-rank setting. Specifically, we model the noise as the position-dependent trust bias and propose a noise-aware Position-Based Model, named TrustPBM, to better capture user click behavior. We propose an Expectation-Maximization algorithm to estimate both examination and trust bias from click data in TrustPBM. Furthermore, we show that it is difficult to use a pure IPS method to incorporate click noise and thus propose a novel method that combines a Bayes rule application with IPS for unbiased learning-to-rank. We evaluate our proposed methods on three personal search data sets and demonstrate that our proposed model can significantly outperform the existing unbiased learning-to-rank methods.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74
Abstract
Existing unbiased learning-to-rank models use counterfactual inference, notably Inverse Propensity Scoring (IPS), to learn a ranking function from biased click data. They handle the click incompleteness bias, but usually assume that the clicks are noise-free, i.e., a clicked document is always assumed to be relevant. In this paper, we relax this unrealistic assumption and study click noise explicitly in the unbiased learning-to-rank setting. Specifically, we model the noise as the position-dependent trust bias and propose a noise-aware Position-Based Model, named TrustPBM, to better capture user click behavior. We propose an Expectation-Maximization algorithm to estimate both examination and trust bias from click data in TrustPBM. Furthermore, we show that it is difficult to use a pure IPS method to incorporate click noise and thus propose a novel method that combines a Bayes rule application with IPS for unbiased learning-to-rank. We evaluate our proposed methods on three personal search data sets and demonstrate that our proposed model can significantly outperform the existing unbiased learning-to-rank methods.