{"title":"The Lie algebra of classical mechanics","authors":"R. McLachlan, A. Murua","doi":"10.3934/jcd.2019017","DOIUrl":null,"url":null,"abstract":"Classical mechanical systems are defined by their kinetic and potential energies. They generate a Lie algebra under the canonical Poisson bracket. This Lie algebra, which is usually infinite dimensional, is useful in analyzing the system, as well as in geometric numerical integration. But because the kinetic energy is quadratic in the momenta, the Lie algebra obeys identities beyond those implied by skew symmetry and the Jacobi identity. Some Poisson brackets, or combinations of brackets, are zero for all choices of kinetic and potential energy, regardless of the dimension of the system. Therefore, we study the universal object in this setting, the `Lie algebra of classical mechanics' modelled on the Lie algebra generated by kinetic and potential energy of a simple mechanical system with respect to the canonical Poisson bracket. We show that it is the direct sum of an abelian algebra $\\mathcal X$, spanned by `modified' potential energies isomorphic to the free commutative nonassociative algebra with one generator, and an algebra freely generated by the kinetic energy and its Poisson bracket with $\\mathcal X$. We calculate the dimensions $c_n$ of its homogeneous subspaces and determine the value of its entropy $\\lim_{n\\to\\infty} c_n^{1/n}$. It is $1.8249\\dots$, a fundamental constant associated to classical mechanics. We conjecture that the class of systems with Euclidean kinetic energy metrics is already free, i.e., the only linear identities satisfied by the Lie brackets of all such systems are those satisfied by the Lie algebra of classical mechanics.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2019017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Classical mechanical systems are defined by their kinetic and potential energies. They generate a Lie algebra under the canonical Poisson bracket. This Lie algebra, which is usually infinite dimensional, is useful in analyzing the system, as well as in geometric numerical integration. But because the kinetic energy is quadratic in the momenta, the Lie algebra obeys identities beyond those implied by skew symmetry and the Jacobi identity. Some Poisson brackets, or combinations of brackets, are zero for all choices of kinetic and potential energy, regardless of the dimension of the system. Therefore, we study the universal object in this setting, the `Lie algebra of classical mechanics' modelled on the Lie algebra generated by kinetic and potential energy of a simple mechanical system with respect to the canonical Poisson bracket. We show that it is the direct sum of an abelian algebra $\mathcal X$, spanned by `modified' potential energies isomorphic to the free commutative nonassociative algebra with one generator, and an algebra freely generated by the kinetic energy and its Poisson bracket with $\mathcal X$. We calculate the dimensions $c_n$ of its homogeneous subspaces and determine the value of its entropy $\lim_{n\to\infty} c_n^{1/n}$. It is $1.8249\dots$, a fundamental constant associated to classical mechanics. We conjecture that the class of systems with Euclidean kinetic energy metrics is already free, i.e., the only linear identities satisfied by the Lie brackets of all such systems are those satisfied by the Lie algebra of classical mechanics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.