C. L. Di Prinzio, P. I. Achával, D. Stoler, G. AGUIRRE VARELA
{"title":"KINETIC EVOLUTION OF A 3D SPHERICAL CRYSTAL WITH MOBILE PARTICLESUSING MONTE CARLO - PART II","authors":"C. L. Di Prinzio, P. I. Achával, D. Stoler, G. AGUIRRE VARELA","doi":"10.31527/analesafa.2019.30.4.79","DOIUrl":null,"url":null,"abstract":"In this work, the migration of the three-dimensional (3D) spherical crystal in the presence of mobile particles using aMonte Carlo algorithm was studied. Different concentrations of particles (f) and different particles mobilities (Mp)were used. It was found that the grain size reaches a critical radius (Rc) which depends exclusively onf. This dependence can be written as:Rc~f^1/3. The dynamic equation of grain size evolution and its analytical solution were alsofound. The analytical solution successfully fits the simulation results. The particles fraction in the grain boundary wasalso found analytically and it fits with the computational data.","PeriodicalId":41478,"journal":{"name":"Anales AFA","volume":"22 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales AFA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31527/analesafa.2019.30.4.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the migration of the three-dimensional (3D) spherical crystal in the presence of mobile particles using aMonte Carlo algorithm was studied. Different concentrations of particles (f) and different particles mobilities (Mp)were used. It was found that the grain size reaches a critical radius (Rc) which depends exclusively onf. This dependence can be written as:Rc~f^1/3. The dynamic equation of grain size evolution and its analytical solution were alsofound. The analytical solution successfully fits the simulation results. The particles fraction in the grain boundary wasalso found analytically and it fits with the computational data.