FEM based Assessment of Winding Inter-Tum Fault Indicators in Line Connected Induction Motors

M. Andriollo, Rahul R. Kumar, A. Tortella, Riccardo Zavagnin
{"title":"FEM based Assessment of Winding Inter-Tum Fault Indicators in Line Connected Induction Motors","authors":"M. Andriollo, Rahul R. Kumar, A. Tortella, Riccardo Zavagnin","doi":"10.23919/AEIT50178.2020.9241186","DOIUrl":null,"url":null,"abstract":"The paper aims at the definition of proper indicators for the effective detection of stator inter-turn faults in line connected induction motors. The procedure uses a finite element model related to a standard medium rated motor, tuned taking into account both magnetic saturation and the actual winding scheme. After the experimental check with reference to different load conditions, multiple fault indicators are evaluated by elaborating the motor current components. The same model predicts the effects of asymmetric voltage supply on the current harmonics to prevent misleading fault detection. Moreover, a relation between fault severity and the experimental setup to reproduce similar current asymmetries as in the actual fault condition has been examined. On this basis, some measurements have been carried out, enabling to have a broad check on the fault indicator effectiveness.","PeriodicalId":6689,"journal":{"name":"2020 AEIT International Annual Conference (AEIT)","volume":"106 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT50178.2020.9241186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper aims at the definition of proper indicators for the effective detection of stator inter-turn faults in line connected induction motors. The procedure uses a finite element model related to a standard medium rated motor, tuned taking into account both magnetic saturation and the actual winding scheme. After the experimental check with reference to different load conditions, multiple fault indicators are evaluated by elaborating the motor current components. The same model predicts the effects of asymmetric voltage supply on the current harmonics to prevent misleading fault detection. Moreover, a relation between fault severity and the experimental setup to reproduce similar current asymmetries as in the actual fault condition has been examined. On this basis, some measurements have been carried out, enabling to have a broad check on the fault indicator effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有限元法的线连异步电动机绕组匝间故障指标评估
本文的目的是确定合适的指标,以便有效地检测线路连接异步电动机定子匝间故障。该程序使用与标准中等额定值电机相关的有限元模型,并考虑磁饱和和实际绕组方案进行调整。在参照不同负载条件进行实验校核后,通过细化电机电流组成,评估多个故障指标。该模型还预测了不对称供电对电流谐波的影响,以防止误检。此外,还研究了故障严重程度与实验设置之间的关系,以再现与实际故障条件相似的电流不对称。在此基础上,进行了一些测量,从而能够对故障指示器的有效性进行广泛的检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectral and Discriminant Analysis Based Classification of Faults in Induction Machines Overview of distribution grid test systems for benchmarking of power system analyses Exploit GaN FET technologies in high efficiency flyback topologies: pros and cons of different architectures Modeling the OHL vulnerability to strong wind New flexibility services and technologies: ENEL experiences in Italy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1