{"title":"Silver Nanoparticles and PDMS Hybrid Nanostructure for Medical Applications","authors":"Solano-Umaña Victor, Vega-Baudrit José Roberto","doi":"10.5772/INTECHOPEN.74372","DOIUrl":null,"url":null,"abstract":"For many years, people have known about silver’s antibacterial qualities. Silver nanoparticles are widely used in consumer products, biomedical equipment, textile products and in other applications. Having a larger surface area to coat or spread over another surface, offers a greater contact area, therefore, increases antimicrobial properties. Also, these nanoparticles can be incorporated into polydimethylsiloxane (PDMS) implants as immobilized or occluded particles to improve their performance in the body. PDMS is commonly used for biomedical applications, including components for microfluidics, catheters, implants, valves, punctual plugs, orthopedics and micro gaskets. It can be manufactured easily in different forms such as fibers, fabrics, films, blocks and porous surfaces. The use of silver nanoparticles for their antimicrobial qualities improves PDMS biocompatibility, because it inhibits microbial growth, thereby making it more attractive for biomedical applications. The presence of metal nanoparticles also helps to reduce the hydrophobic nature of PDMS. This property of PDMS does not encourage cell adhesion, which is a very critical requirement for medical implants. Silver nanoparticles improve the silicone’s wettability. The exceptional properties of silver nanoparticles combined with the PDMS have made this hybrid nanostructure applicable to different medical uses.","PeriodicalId":21773,"journal":{"name":"Silver Nanoparticles - Fabrication, Characterization and Applications","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silver Nanoparticles - Fabrication, Characterization and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
For many years, people have known about silver’s antibacterial qualities. Silver nanoparticles are widely used in consumer products, biomedical equipment, textile products and in other applications. Having a larger surface area to coat or spread over another surface, offers a greater contact area, therefore, increases antimicrobial properties. Also, these nanoparticles can be incorporated into polydimethylsiloxane (PDMS) implants as immobilized or occluded particles to improve their performance in the body. PDMS is commonly used for biomedical applications, including components for microfluidics, catheters, implants, valves, punctual plugs, orthopedics and micro gaskets. It can be manufactured easily in different forms such as fibers, fabrics, films, blocks and porous surfaces. The use of silver nanoparticles for their antimicrobial qualities improves PDMS biocompatibility, because it inhibits microbial growth, thereby making it more attractive for biomedical applications. The presence of metal nanoparticles also helps to reduce the hydrophobic nature of PDMS. This property of PDMS does not encourage cell adhesion, which is a very critical requirement for medical implants. Silver nanoparticles improve the silicone’s wettability. The exceptional properties of silver nanoparticles combined with the PDMS have made this hybrid nanostructure applicable to different medical uses.
IF 29.4 1区 材料科学Advanced MaterialsPub Date : 2024-01-16DOI: 10.1002/adma.202310645
Yuhang Dai, Chengyi Zhang, Jianwei Li, Xuan Gao, Ping Hu, Chumei Ye, Hongzhen He, Jiexin Zhu, Wei Zhang, Ruwei Chen, Wei Zong, Fei Guo, Ivan P. Parkin, Dan J. L. Brett, Paul R. Shearing, Liqiang Mai, Guanjie He